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1 Introduction and summary

In the past decade we have witnessed a rebirth of theoretical efforts to address the strong

coupling problem in gauge theories. The tool has been the large-Nc expansion but a new

twist has emerged, whereby the relevant dual string theories live in an appropriately curved

higher dimensional space-time.

The prototype example has been the AdS/CFT correspondence as exemplified by the

(well studied by now) duality of N = 4 super Yang-Mills theory and IIB string theory on

AdS5×S5 [1–3]. Further studies focused on providing examples that are closer to real world

QCD, [4, 5]. It is fair to say that we now have a good holographic understanding of phe-

nomena like confinement, chiral symmetry and its breaking as well as several related issues.

The finite temperature dynamics of gauge theories, has a natural holographic counterpart

in the thermodynamics of black-holes on the gravity side, and the thermal properties of

various holographic constructions have been widely studied, [4, 6–10], exhibiting the holo-

graphic version of deconfinement and chiral restoration transitions.

The simplest top-down string theory model of QCD involves D4 branes with super-

symmetry breaking boundary conditions for fermions [4], as well as a flavor sector that

involves pairs of D8 − D8 probe branes inserted in the bulk, [11]. The qualitative thermal

properties of this model closely mimic what we expect in QCD, [7]. Although such theo-

ries reproduced the qualitative features of IR QCD dynamics, they contain Kaluza-Klein

modes, not expected in QCD, with KK masses of the same order as the dynamical scale

of the gauge theory. Above this scale the theories deviate from QCD. Therefore, although

the qualitative features of the relevant phenomena are correct, a quantitative matching to

real QCD is difficult.

Despite the hostile environment of non-critical theory, several attempts have been

made to understand holographic physics in lower dimensions in order to avoid the KK

contamination, based on two-derivative gravitational actions, [12]. Indeed, large N QCD

is expected to be described by a 5-dimensional theory. The alternative problem in non-

critical theories is that curvatures are of string scale size and the truncation of the theory

to the zero mode sector is subtle and may be misleading.

A different and more phenomenological bottom-up approach was developed and is

now known as AdS/QCD. The original idea described in [13] was successfully applied

to the meson sector in [14], and its thermodynamics was analyzed in [8, 15]. The bulk
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gravitational background consists of a slice of AdS5, and a constant dilaton. There is a UV

and an IR cutoff. The confining IR physics is imposed by boundary conditions at the IR

boundary. This approach, although crude, has been partly successful in studying meson

physics, despite the fact that the dynamics driving chiral symmetry breaking must be

imposed by hand via IR boundary conditions. Its shortcomings however include a glueball

spectrum that does not fit very well the lattice data, the fact that magnetic quarks are

confined instead of screened, and asymptotic Regge trajectories for glueballs and mesons

that are quadratic instead of linear.

A phenomenological fix of the last problem was suggested by introducing a soft IR

wall, [16]. Although this fixes the asymptotic spectrum of mesons and meson dynamics

is in principle self-consistent, it does not allow a consistent treatment of the glue sector

both at zero and finite temperature. In particular, neither dilaton nor metric equations

of motion are solved. Therefore the “on-shell” action is not really on-shell. The entropy

computed from the BH horizon does not match the entropy calculated using standard

thermodynamics from the free energy computed from the action, etc. Phenomenological

metrics for the deconfined phase were also suggested, [17, 18] capturing some aspects of

the expected thermodynamics.

The theoretical advances were paralleled by a very successful experimental effort at

RHIC, [19]. The consensus on the existing data is that shortly after the collision a ball

of quark-gluon plasma (QGP) forms that is at thermal equilibrium, and subsequently

expands until its temperature falls below the QCD transition (or crossover) where it finally

hadronizes. Relativistic hydrodynamics describes very well the QGP [20], with a shear-

viscosity to entropy density ratio close to that of N = 4 SYM, [21]. The QGP is at

strong coupling, and it necessitates a treatment beyond perturbative QCD approaches, [22].

Moreover, although the shear viscosity from N = 4 seems to be close to that “measured”

by experiment, lattice data indicate that in the relevant RHIC range 1 ≤ T
Tc

≤ 3 the QGP

seems not to be a fully conformal fluid. Therefore the bulk viscosity is expected to play

a role near the phase transition [23, 24]. The lattice techniques have been successfully

used to study the thermal behavior of QCD, however they are not easily extended to

the computation of hydrodynamic quantities. They can be used however, together with

parametrizations of correlators in order to pin down parameters [24]. To date it seems that

the holographic approach is a promising one in this direction.

In the bottom-up holographic model of AdS/QCD, the bulk viscosity is zero as con-

formal invariance is essentially not broken (the stress tensor is traceless). In the soft-wall

model, no reliable calculation can be done for glue correlators and therefore transport

coefficients are ill-defined. Similar remarks hold for other phenomenologically interesting

observables as the drag force and the jet quenching parameter [25–27].

In order to go beyond the inadequacies of existing bottom-up holographic models, input

has been put together both from string theory and QCD in order to craft an improved

holographic QCD model, [28]. It is a five-dimensional Einstein dilaton system, with an

appropriately chosen dilaton potential.

The vacuum solution involves an asymptotically logarithmically AdS solution near the

boundary. The bulk field λ, dual to the ’t Hooft coupling, is vanishing logarithmically

– 2 –
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near the boundary in order to match the expected QCD behavior. This implies that the

potential must have a regular Taylor expansion as λ → 0, and that λ = 0 is not an

extremum. This is unlike almost all asymptotically AdS solutions discussed so far in the

literature. In particular the canonically normalized scalar (the dilaton) is diverging at the

boundary r → 0 as φ ∼ − log(− log r). The coefficients of the UV Taylor expansion of the

potential are in one-to-one correspondence with the holographic β-function.

In the IR, the potential must have an appropriate behavior so that the theory is con-

fined, has a mass gap and a discrete spectrum. This selects a narrow range of asymptotics

that roughly obey

V (λ) ∼ λ2Q , λ → ∞ with
2

3
≤ Q <

4

3
. (1.1)

The vacuum solution always ends in a naked singularity in the bulk. Demanding that this is

a “good” singularity in the classification of Gubser [29] implies Q < 4/3. However, here we

use a narrower notion of what we mean by “good” singularity: we accept only singularities

that are repulsive to physical fluctuations, i.e. such that no extra boundary conditions are

needed there. This requirement further restricts Q < 2
√

2
3 in (1.1). Simple interpolations

between the UV and IR asymptotics reproduce very well the low-lying glueball spectrum

as well as the perturbative running of the ’t Hooft coupling [28].

Five-dimensional Einstein dilaton systems with a monotonic dilaton potential (no ex-

trema) provide an interesting class of gravitational theories that display diverse behaviors

as a function of the IR asymptotics of the potential. Potentials with asymptotics growing

slower than (1.1) with Q = 2/3 do not exhibit confinement. Potentials with asymptotics

growing faster than (1.1) with Q = 2
√

2/3 do exhibit confinement but the naked singularity

is too strong and extra boundary conditions are needed at the singularity in order to study

the spectrum of fluctuations.

In this paper we will analyze the existence and structure of black-hole solutions, and

their thermodynamics, in the class of gravitational theories described above. We will

take the horizon to be a flat three-dimensional torus, but our techniques extend to the

case where the horizon is a three-sphere. Our preliminary results in this direction have

been published in [30]. The thermodynamics of similar systems has also been analyzed

in [31]. Our aim is to eventually describe the finite-temperature structure of a holographic

model closely resembling pure large-Nc Yang Mills theory. The latter is widely analyzed

using lattice techniques (see e.g. [32, 33]), which indicate that the theory exhibits a first

order confinement-deconfinement phase transition at a non-zero critical temperature of

the order of the strong coupling scale Λ. While one of the main motivations for having a

realistic holographic description of finite-temperature QCD is the computation of transport

coefficients and other quantities relevant for heavy ion collision experiments, in this paper

we will only be concerned with equilibrium thermodynamics, as this is already a daunting

task. We leave the hydrodynamics for the very near future [34].

As we show in this paper, the correspondence between the 5D Einstein-dilaton setup

advocated in [28] and 4D large Nc pure Yang-Mills extends to the finite temperature regime

in a remarkable way. One of the main results of this work is the proof of the the existence,
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in the case of confining theories, of a first order Hawking-Page phase transition between the

thermal gas and black-hole solutions. Moreover, the 5D black-holes in confining theories

provide a realistic holographic description of the thermodynamics of the deconfined phase

of 4D, large Nc pure Yang-Mills, that emerges from lattice studies.

The black-holes that we discuss obey the same UV asymptotics as the zero-temperature

solution, namely they are asymptotically-logarithmically AdS with a logarithmically van-

ishing dilaton. Close to the AdS boundary the metric is that of a 5D AdS-Schwarzschild

black-hole in Poincaré coordinates (i.e. with flat horizon), up to logarithmic corrections.

Although asymptotically AdS black holes in Einstein-dilaton theories have received consid-

erable attention (see e.g. [35]), these examples were always associated with the existence

of an exactly AdS solution with constant dilaton, corresponding to an extremum of the

dilaton potential. In contrast, the 5D black-holes we discuss here are of a new type, since

the dilaton potential in our model is always monotonic. The AdS point is at infinity in

field space, therefore the models we discuss do not have a pure AdS solution.

In this paper we derive a series of general results about the thermodynamics of the 5D

system, that do not depend on the specific form of the potential but only on its small λ

and large λ asymptotics. All these results point to the remarkable similarity between the

thermodynamics of 5D models in the confining class, and the thermodynamics of 4D large

Nc Yang-Mills. While the detailed quantitative comparison between a specific model and

the lattice results for thermal Yang-Mills will appear elsewhere [36], these general results

are the main focus of this paper. Below we briefly summarize them.

Parameters of the solutions. The parameters of the action are the 5D Planck mass

Mp, and the various parameters that determine the shape of the dilaton potential V (λ).

In particular, the value V (0) sets the AdS length scale ℓ. In addition, every black hole

solution is characterized by the five integration constants of the 5th order dilaton-gravity

system of equations.

We show how to identify these parameters in the dual gauge theory and eventually

how to fix them.

• We keep the form of the potential generic, except that it should be a monotonic

function of λ and it should obey the small and large λ asymptotics we mentioned

above. A specific potential can be fixed by requiring that the zero-T spectrum agrees

with the lattice data, as was done in [28].

• The specific value of the AdS length ℓ is irrelevant for any physical observable, and

sets the overall units of the 5D solution.

• The 5D Planck scale (in AdS units) is fixed by matching the free field asymptotics

of the QCD free energy in the high-temperature limit. This universally fixes Mpℓ =

1/(45π2). The physical Planck mass, that determines the strength of gravitational

interactions (and of the interactions between glueballs in the dual theory) includes

an extra factor of N
2/3
c , that guarantees the suppression of quantum corrections in

the large Nc limit in our setup.

– 4 –
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• Among the 5 integration constants of the equations of motion, only two are physical

and independent: the value of the dilaton at the horizon, and an overall scale Λ,

related to the dilaton asymptotics near the UV boundary. The former determines the

black hole temperature and entropy; the latter is also present in the vacuum solution,

and it is dual to ΛQCD. Fixing the UV asymptotics is equivalent to selecting a specific

value for Λ.

Since our model should be thought of as coming from a non-critical string theory, an

additional parameter is the string scale ℓs. This is invisible in the 5D Einstein-dilaton

setup we assume throughout this paper, and we will not discuss it any further. It can be

fixed by comparing the effective string tension (calculated from the linear part of the static

quark potential) to the lattice data, as was done in [28].

Existence and uniqueness of the black-hole solutions. The T = 0 solution defines

a vacuum background. Once we specify the UV asymptotics of a black-hole solution to

be the same as for the vacuum background, there is only one additional parameter that

characterizes the solution, that we take to be the value of the dilaton at the horizon, λh.

For any monotonic dilaton potential V (λ) we show that, for each λh, ranging between

zero and infinity, there exists a unique black-hole solution, with a temperature T , entropy

S (horizon area) and free energy F functions of λh only. Thus, the thermodynamics is

encoded in the functions T (λh), S(λh) and F(λh), namely the temperature, entropy and

free energy. Moreover, we show that the limit λh → ∞ of the black-hole solution coincides

with the unique zero-temperature solution that, for a given potential, displays a “good”

(i.e. repulsive) singularity.

Although our models allow an infinite number of black-hole solutions (each with a

different value of Λ) with the same mass, this does not imply that these black-holes admit

scalar hair. The reason is that each different value of Λ corresponds to a different asymp-

totic for the metric and dilaton. In other words, Λ plays the role of an extra “charge”

that can be measured at infinity. Moreover, due to the absence of extrema in the dilaton

potential, there is no pure AdS-Schwarzschild solution with a constant dilaton. Thus, our

black hole solutions satisfy the no-hair theorems for asymptotically AdS gravity coupled

to scalars (see [37] for a recent discussion).

Deconfinement phase transition. We show that any 5D theory, whose zero-

temperature solution is dual to a UV-free and IR-confining 4D theory, also exhibits a

Hawking-Page type of phase transition, dual to a deconfining phase transition in 4D. The

transition is always first order, except in the special case when the IR behavior of the vac-

uum solution is at the borderline between confining and non-confining geometries: in this

case the (string frame) solution is asymptotically a flat metric with a linear dilaton, and the

phase transition is second order. Conversely, non-confining theories do not exhibit a phase

transition: black-holes dominate the thermal ensemble for any non-zero temperature T .

The phase structure of black-holes in confining theories is similar to what is found in

the original Hawking-Page situation [38], namely:

• Black hole solutions exist only above a certain temperature Tmin;

– 5 –
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• Generically, for any T > Tmin there exist (at least) two different black-hole solutions

with the same T and the same UV asymptotics (large and small BHs);

• Above a certain critical temperature Tc > Tmin, it is (one of the) large black-holes

that dominate the thermal ensemble, while for 0 < T < Tc it is the “thermal gas”

solution (with the same metric and dilaton as the zero-temperature solution) that

dominates. On the other hand, the small black-holes never dominate the ensemble.

• Typically, the big black-holes have positive specific heat, and are thermodynamically

stable, whereas the small black-holes have negative specific heat and are unstable.

There may be however exceptions to this rule, where in a limited range of λh the

small black-holes are also stable.

• In the borderline case (asymptotically linear dilaton), there is only a single black-hole

for T > Tmin, and the second order transition occurs exactly at Tmin.

There is one important difference with the Hawking-Page case, however. There, the

black-holes are global AdS-Schwarzschild with horizon topology S3, and the theory is dual

to a conformal field theory on the S1 ×S3 [4]; Here instead we are dealing with black-holes

whose horizon has topology T 3, and the phase transition is associated with dynamical

confinement instead of the non-trivial topology of space.

Similarities of the black-hole phase and the deconfined phase in Yang-Mills.

The thermodynamics of black-holes in 5D duals of confining theories shares many features

with the deconfined phase of 4D Yang-Mills at large Nc.

• The appropriately regularized free energy F/N2
c acts as an order parameter for the

phase transition. This is similar to the case of N = 4 SYM on the sphere, and as

expected in pure YM in flat space;

• Another order parameter is the Polyakov loop which vanishes in the confined phase

and becomes non-trivial above the deconfinement transition. This is paralleled by

the dual gravity computation. A string worldsheet that encircles the Euclidean time

direction and extends in the radial direction has infinite action in the confining ge-

ometry, hence the vev of the loop vanishes. On the other hand it becomes finite in

the black-hole geometry yielding a finite value for the associated vev [4].

• The latent heat per unit volume is of order N2
c T 4

c ;

• At very high temperature the thermodynamic quantities behave like in a conformal

theory, although the approach to conformality is logarithmically slow. With a suitable

choice of the relation between the 5D Planck scale and the AdS length, in the limit

T → ∞ we find a free gas, as appropriate for a gravity dual of pure Yang-Mills and

unlike strongly coupled theories like N = 4 sYM .

– 6 –



J
H
E
P
0
5
(
2
0
0
9
)
0
3
3

• The speed of sound is small near the phase transition, and it approaches the conformal

value c2
s → 1/3 at high temperature.1

The topological vacuum density. The vacuum expectation value of the topological

density, 〈TrF ∧F 〉 can be computed by including, on the gravity side, a 5D axion, dual to

the YM theta parameter [28]. We show that in the black-hole phase (deconfinement) the

profile of the axion is necessarily trivial, unlike the low temperature phase (confinement).

This causes the vev of the topological density to vanish. It is in agreement with the large

Nc expectations and with the lattice calculations in finite temperature Yang-Mills [41].

Explicit calculation of the free energy and the role of the gluon condensate.

We compute explicitly the free energy of the black-hole solutions, relative to the vacuum,

as the difference between the on-shell actions. A crucial role in this computation and in the

dynamics of the phase transition is played by (the holographic dual of) the thermal vev of

TrF 2. This quantity appears in the near-boundary expansion of the difference between the

black-hole metric scale factor b(r) and its zero-temperature analogue, bo(r). If r denotes

the conformal coordinate of both metrics, the AdS boundary is at r = 0. We show that,

once the UV asymptotics are fixed to be the same for all the solutions, then as r → 0:

b(r) − bo(r) = bo(r)

(

G r4

ℓ3
+ subleading

)

. (1.2)

The quantity G is proportional to 〈TrF 2〉T − 〈TrF 2〉o. It is a function of temperature, and

it provides a measure of the deviation from conformality. It plays a crucial role for the

existence of the phase transition.

Indeed, an explicit calculation shows that the free energy difference between a black-

hole and the vacuum solution is given schematically (omitting 3-space volume and other

numerical factors) by:

F ∼ G − TS

4
. (1.3)

The second term is negative definite, and it is the only one present in a conformal field

theory. The gluon condensate is therefore crucial for the existence of a phase transition.

One important point is that the free energy written above receives contributions from

the UV boundary alone: to compute F it is sufficient to know the metric close to the AdS

boundary. This is important for at least two reasons:

1. In the context of AdS/CFT all the information about observable quantities must

be encoded in near-boundary data. No explicit contributions are obtained from the

IR regime. The IR influences only indirectly by fixing normalizable modes near the

boundary via regularity conditions.

2. The specific dynamics of the IR singularity is irrelevant for the computation of the

thermodynamics. By contrast, in other studies claiming the existence of deconfining

phase transitions in simple 5D models [8, 9], it is the IR boundary or singularity that

gives the required positive contribution to the free energy.

1Reproducing this behavior was the main motivation of [31], and it emerges quite naturally in our setup

– 7 –
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Matching the β-function to the trace anomaly. We provide a non-trivial check of

the gauge/gravity correspondence applied to the 5D theories of [28]: the matching of the

(flat space) conformal anomaly, encoded in the YM β-function, to lowest order in a small

λ expansion.2

From the free energy, we can compute the trace of the thermal stress tensor in the

deconfined phase, which turns out to be proportional to the gluon condensate:

〈T µ
µ 〉 ∼ G. (1.4)

On the other hand, in 4D Yang-Mills theory the same quantity 〈T µ
µ 〉 obeys the dilatation

Ward identity:

〈T µ
µ 〉 =

β(λ)

4λ2
〈TrF 2〉. (1.5)

By a holographic computation we can find the relation between 〈TrF 2〉 and G (the latter

being defined by eq. (1.2)), to lowest order in the λ → 0 limit, and can show that the two

expressions for T µ
µ coincide precisely.

Part of the analysis in this paper is performed with the help of some new technical

tools that we believe are interesting by themselves:

• The thermal generalization of the superpotential: This is widely used in the zero-

temperature counterpart (see e.g. [39, 40]). A superpotential W allows to recast

Einstein’s equations for the dilaton and scale factor in the first order form, and to

decouple them from the equations governing the evolution of the thermal function

appearing in the metric;

• The scalar variables: this is a pair of functions of λ, X and Y , that are invariant

under radial diffeomorphisms. They satisfy a coupled system of first-order differential

equations. These functions encode all the information about the UV and IR prop-

erties of the full solution. From them one can easily derive all the thermodynamic

observables and relations.

The paper is organized as follows. In section 2 we review the setup, the vacuum

solutions, and the results about confinement found in [28]. We analyze the possible types

of singularity and we give a more exhaustive analysis of this issue as compared to [28].

In section 3 we describe the black-hole solutions their existence and uniqueness prop-

erties and define the relevant thermodynamic quantities. We then compute the free energy

difference between the black-hole and vacuum solutions, as a function of entropy, temper-

ature, and the value of the gluon condensate.

In section 4 we show that, to lowest order in λ as λ → 0, the trace anomaly computed

from the equation of state matches the holographic computation of the the vev of TrF 2.

In section 5 we prove that confinement at zero temperature is in one-to-one corre-

spondence with the presence of a phase transition at a finite temperature Tc. We find the

explicit form of the black-hole solutions in the two opposite regimes when the black-hole

2This is the initial and simplest step in a rigorous program for the renormalization of asymptotically

logarithmically AdS theories, that will appear shortly, [49].
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horizon is very close to or very far from the UV boundary. We then show that in confining

theories there is always a finite, minimum black-hole temperature, whereas in non-confining

theories black-holes exist with arbitrarily small temperatures. This fact, together with the

first law of black-hole thermodynamics, is used to prove the main statement of this section

in the particular case when there are only two black-hole solutions for each temperature.

The proof in the most general case is left to appendix G.

In section 6 we study the dynamics of the 5D axion, dual to the Yang-Mills vacuum

angle, showing that above the critical temperature the axion profile is necessarily constant,

and the topological density has zero vev.

In section 7 we define the scalar variables, and show that their use helps in computing

all the thermodynamic quantities, as well as the UV and IR asymptotic properties of the

solutions. In particular, in Subsection 7.2 we compute the near-boundary expansion of

the black-hole metric components and dilaton profile, with respect to the vacuum solution.

Section 8 contains a brief outlook.

Most technical details are left to the appendices. In appendix A we give details about

Einstein’s equations in various frames, and the relation between fluctuations in different

frames. In appendix B we revisit the case of a constant potential and derive AdS and

dilaton flow solutions and the corresponding black-holes. In appendix C we give the details

of the computation of the black-hole on-shell action and ADM mass. In appendix D we

provide the high-T asymptotics of the gluon condensate. Appendix E is devoted to the

discussion of the general solution to the zero-temperature superpotential equation, and

the classification of zero-temperature singularities. In appendix F we introduce the finite

temperature generalization of the superpotential, and use it to solve explicitly the black-

hole equations for large λh. In appendix G we give the general proof of the statement in

section 5, in the case where more than 2 black-holes exist for certain temperature ranges. In

appendix H we provide some details of the computations with scalar variables. In particular

in Subsection H.4 we show that a black-hole solution with a regular horizon always connects

with the UV boundary, thus providing the proof of the existence of black-hole solutions for

arbitrary λh. In appendix I we give the high-T asymptotics of various quantities. Finally

in appendix J we show some interesting analytical solutions of the system.

2 Review of vacuum solutions

The holographic duals of large Nc Yang Mills theory proposed in [28] are based on five-

dimensional Einstein-dilaton gravity with a dilaton potential. The basic fields for the pure

gauge sector are the 5D metric gµν (dual to the 4D stress tensor) and a scalar field Φ (dual

to TrF 2). The action for these fields is taken to be:3

S5 = −M3
p N2

c

∫

d5x
√

g

[

R − 4

3
(∂Φ)2 + V (Φ)

]

+ 2M3
p N2

c

∫

∂M
d4x

√
h K. (2.1)

Here, Mp is the five-dimensional Planck scale and Nc is the number of colors. The last

term is the Gibbons-Hawking term, with K being the extrinsic curvature of the boundary.

3See appendix A for our sign conventions.
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The effective five-dimensional Newton constant is G5 = 1/(16πM3
p N2

c ), and it is small in

the large-Nc limit.

The vacuum solutions are of the form

ds2 = b(r)2
(

dr2 + ηijdxidxj
)

, Φ = Φ(r), (2.2)

where the metric is written in conformally-flat coordinates.

The radial coordinate r corresponds to the 4D RG scale. In the holographic dictionary,

we identify the 4D energy scale E with the metric scale factor, E = E0b(r), up to an

arbitrary energy unit E0. Also, we identify λ ≡ eΦ with the running ’t Hooft coupling

λt ≡ Ncg
2
YM, up to an a priori unknown multiplicative factor, λ = κλt. All physical

observables are independent of the parameter κ, as explained in appendix A.3.4

With the above identifications, one can give a holographic definition of the β-function

of the system in terms of the background solution:

β(λ) =
dλ

d log E
= λ

Φ̇

Ȧ
, A(r) ≡ log b(r). (2.3)

Above and throughout this paper a dot stands for a derivative with respect to the radial

(conformal) coordinate r.

With the ansatz (2.2), Einstein’s equations are

6
ḃ2

b2
+ 3

b̈

b
= b2V, 6

ḃ2

b2
− 3

b̈

b
=

4

3
Φ̇2, (2.4)

The dilaton field equation is not an independent equation, but it follows from (2.4).

It is sometimes useful to work with the domain wall coordinates, in which the met-

ric reads:

ds2 = du2 + e2A(u)ηijdxidxj , dr = e−A(u)du, b(u) = eA(u). (2.5)

In this frame Einstein’s equations take the form:

3A′′ + 12A′2 = V (Φ), A′′ = −4

9
Φ′2. (2.6)

where a prime denotes a derivative w.r.t. u. In particular, the second equation implies

that the scale factor of an asymptotically AdS5 spacetime (for which A ∼ −u/ℓ as u →
−∞) is monotonically decreasing, and it therefore provides a consistent definition of the

holographic energy scale.

Einstein’s equations can be put in first order form by defining a superpotential W (Φ),

i.e. one solution to the equation:

V (Φ) = −4

3

(

dW

dΦ

)2

+
64

27
W 2. (2.7)

4More precisely, this statement applies to quantities that can be computed within the Einstein frame.

Quantities that involve the string frame metric may depend on κ in a nontrivial way. In this paper we

will not be concerned with any such quantity, and we leave a more detailed discussion of this issue for an

upcoming work [36].
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With this definition, Einstein’s equations (2.6) become:

Φ′(u) =
dW

dΦ
, A′(u) = −4

9
W (Φ). (2.8)

The system of eqs. (2.7)–(2.8) has three integration constants, one of which is an

artifact due to reparametrization invariance.5 The solution is completely specified by a

choice of W (Φ), up to an integration constant that consists in a simultaneous rescaling of

b(r) and r, and only affects the overall scale of the system. In other words, all nontrivial

physics is encoded in W (Φ).

The general solution of eq. (2.7) is discussed in detail in appendix E. As we will discuss

at the end of this section, for any V (Φ), there is a single choice of W (Φ) that satisfies some

reasonable physical conditions. We are thus left with a one-parameter family of solutions,

distinguished only by a choice of scale. This parallels the situation in the gauge theory.

Another useful reformulation of the Einstein’s equations is in terms of the logarithmic

derivative of W (Φ), which is directly related to the β-function:

X(Φ) = −3

4

d log W

dΦ
=

β(λ)

3λ
(2.9)

The complete solution of the system is encoded in this function. It is determined from the

potential by solving a first-order equation:

dX

dΦ
= −4

3
(1 − X2)

(

1 +
3

8X

d log V

dΦ

)

. (2.10)

Once X is known the scale factor and the dilaton are obtained from it by solving the first

order equations (H.1) and (H.2). Thus, this formulation reduces the Einstein equations to

three first order equations. In section 7, we shall present a natural generalization of this

formulation to the black-hole solutions.

The small-λ and large-λ asymptotic of W (λ) (or X(λ)) determine the solution in the

UV and the IR of the geometry, corresponding to the large- and small-b regions, respec-

tively.

2.1 UV asymptotics

In the UV, asymptotic freedom with logarithmically running coupling requires the back-

ground to be asymptotically Anti-de Sitter. The perturbative β-function, β ∼ −b0λ
2 −

b1λ
3 + . . ., requires an expansion of X in the form:

X(λ) = −b0

3
λ − b1

3
λ2 + O(λ3) (2.11)

where b0 and b1 are the β-function coefficients. Using (2.9) one finds the expansion of the

superpotential as,

W (λ) =
9

4ℓ

(

1 + w0λ + w1λ
2 + . . .

)

, (2.12)

5This can be seen by choosing Φ as a coordinate: then the first equation in (2.8) becomes vacuous, and

only two first order equations remain.
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which implies a potential of the form

V (λ) =
12

ℓ2
(1 + v0λ + v1λ

2 + . . .). (2.13)

Here ℓ is the AdS length, and the dimensionless parameters wi, vi are fixed in terms of the

β-function coefficients. In particular the small-λ expansion parameters wi of the superpo-

tential are universal, and do not depend on the particular choice of solution of eq. (2.7):

as shown in appendix E, different solutions of eq. (2.7) differ by subleading non-analytic

terms. For a general potential (2.13), the β-functions coefficients and the parameters of

the potential are related as follows:

b0 =
9

8
v0 =

9

4
w0, b1 =

9

4
v1 −

207

256
v2
0 =

9

2
w1 −

9

4
w2

0. (2.14)

Let us here also define the ratio,

b =
b1

b2
0

, (2.15)

which will prove useful in what follows. Note that b is invariant under the rescaling λ → κλ.

The UV region corresponds to r → 0 in conformal coordinates, and the asymptotic

solution is given by:

b(r) =
ℓ

r

[

1 +
4

9

1

log rΛ
− 4

9
b

log(− log rΛ)

log2 rΛ
+ . . .

]

, (2.16)

b0λ(r) = − 1

log rΛ
+ b

log(− log rΛ)

log2 rΛ
+ . . . (2.17)

The scale Λ appearing in the expansion is the only physical integration constant, and it

is the holographic manifestation of the strong coupling scale in QCD perturbation theory.

The UV boundary conditions for the metric and dilaton are completely specified by the

choice of this scale. In practice Λ is determined by a combination of the initial conditions

of λ and A, given at a point r0 close to the boundary, as,

Λ ℓ = exp

[

A(λ0) −
1

b0λ0

]

(b0λ0)
−b + · · · . (2.18)

The ellipsis refer to contributions that vanish as one takes the cut-off away, λ0 → 0. The

coefficients b0 and b are defined in (2.14) and (2.15). The derivation of (2.18) follows from

appendix H.1 and the eqs. (2.16)–(2.17) above.

2.2 IR asymptotics

The IR properties such as confinement of the electric color charges (signaled by an area

law for the Wilson loop) and the features of the glueball spectrum are determined by the

behavior of W (λ) (or X(λ)) for large λ. In particular, the Wilson loop follows an area law

if and only if W (λ) grows as λ2/3 or faster. The same condition ensures a mass gap in the

spectrum. In other words one has the criterion:

Confinement ⇔ W (λ) ≥ O(λ2/3) as λ → ∞.
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The form of the IR geometry depends on the details of the asymptotics. The Einstein-

frame scale factor is guaranteed to decrease monotonically from the UV to the IR, and

eventually the spacetime terminates in a singularity at some r = r0. We classify the

singularity into good and bad according to the following criterion [28]:

A good singularity is screened, i.e. it is repulsive to physical modes.

On the other hand, bad singularities are such that finite energy modes can probe arbitrarily

deep into the region close to the singularity. Typically this means that one needs to specify

extra boundary conditions at the singularity, i.e. the information provided with the classical

action is not enough to compute physical quantities. For good singularities, all (physical)

boundary conditions must be imposed in the UV region. Therefore we believe that only

“good” singularities have a meaningful holographic interpretation.

The most interesting geometries are those with the singularity at r0 = ∞, and with

the asymptotics:

b(r) ∼ e−( r
L)

α

, λ(r) ∼ e3/2( r
L)

α ( r

L

)
3
4
(α−1)

, r → ∞ (2.19)

Here, the length scale L is set by the same integration constant that fixes Λ in eq. (2.16).

In such solutions the curvature of the string-frame metric vanishes in the extreme IR.

These solutions occur when W (λ) and X(λ) behave for large λ as:

W (λ) ∼ λ2/3(log λ)
α−1
2α , X(λ) ∼ −1

2
− 3

8

α − 1

α

1

log λ
+ . . . , λ → ∞, (2.20)

which in turn requires the potential to grow as

V (λ) ∼ λ4/3(log λ)
α−1

α , λ → ∞, (2.21)

These solutions are confining iff α ≥ 1.6

The parameter α determines the asymptotic spectrum of normalizable fluctuations

around the solution, which corresponds to the spectrum of composite states (glueballs) of

the gauge theory, with masses that scale as:

mn ∼ n(α−1)/α. (2.22)

For a linear glueball spectrum, m2
n ∼ n, one should choose α = 2.

The borderline confining case, α = 1 has interesting properties: the asymptotic geom-

etry in the string frame reduces to flat space with a linear dilaton. The spectrum has a

mass gap and it is discrete up to a certain energy level, above which it becomes continuous.

We will see that this case also has special thermodynamic properties.

Solutions with a singularity at a finite value r0 of the conformal coordinate are also

confining, and correspond to W (λ) growing as λQ with Q > 2/3. Close to the singularity

r = r0 the scale factor vanishes as

b(r) ∼ (r0 − r)δ, Q =
2

3

√

1 + δ−1. (2.23)

6Solutions such that b(r) decays as a power-law as r → ∞ are not confining.
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The glueball spectrum has quadratic growth, m2
n ∼ n2, as in the hard wall models.

The case δ < 1 (Q > 2
√

2/3) should be discarded, since in this case the singularity

is a bad one according to the our classification, i.e. it is not screened from the physical

fluctuations [28].

An example of this type (with δ = 1/3) is the “dilaton flow” solution of 5D Einstein-

dilaton gravity with a negative cosmological constant, discussed in [42, 43], which was

argued to be dual to an SO(6) invariant mass deformation N = 4 SYM. Although this

description can be adequate in the UV, calculation of any physical quantity requires ex-

tra knowledge about the details of the singularity, which is not available in the classical

gravity approximation.

2.3 The superpotential vs. the potential

The action (2.1) is defined in terms of V (λ), not W (λ) or X(λ). Therefore it is important

to know what other large-λ asymptotics for W and X(λ) can occur for a given V (λ). This

problem is analyzed in appendix E (for W ) and in appendix H.3 (for X), where the form

of the general solution of eqs. (2.7) and (2.10) is discussed in detail. Essentially, for any

given monotonic V (λ), a solution with a good infrared singularity, if it exists, is unique.

In the UV region, λ → 0, all solutions to eq. (2.7) have the same expansion, given

by eq. (2.12) with the same coefficients wi. In other words, in the UV all solutions to

Einstein’s equations flow to the same log-corrected AdS (eqs. (2.16)–(2.17)).

In the IR, the situation is more complicated. We consider a potential V (λ) defined

over the whole range 0 < λ < ∞, and such that for large enough λ it is well approximated

by the form:

V (λ) ≃ V∞ λ2Q(log λ)P (2.24)

for some real P and Q.7 We will assume V (λ) is a positive, monotonic function, to avoid

the presence of conformal fixed points at finite λ. Thus, we take V∞ > 0 and Q ≥ 0.

All the interesting physics is found for Q ≤ 4/3. As shown in appendix E, if Q ≤ 4/3,

there exist three classes of solutions to the superpotential equation:

1. Special: A single solution such that W (λ) ∼
√

V (λ) for λ → ∞.

2. Generic: A continuous family with leading asymptotics

W (λ) ≃ Cλ4/3 λ → ∞ (2.25)

where C is an arbitrary constant.

3. Bouncing: A continuous family which never reaches the asymptotic large-λ region:

the variable λ attains a maximum value λ∗, then decreases again to zero towards a

region where

W ≃ C̃λ−4/3, λ → 0, (2.26)

7Although we parametrize the IR asymptotic in this particular form, all our discussion also applies to

any potential that has intermediate IR growth between two values of Q or P that share the same behavior,

for example V (λ) ∼ λQ(log λ)P (log log λ)R . . .. However if Q or P take values that mark the boundary

between two different qualitative behaviors of the solution (e.g. Q = 4/3, see below), extra work is needed

to understand the intermediate asymptotics.
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On the other hand, if Q > 4/3 only the bouncing solution exists,8 and the dilaton

never reaches infinity.

The special solution has asymptotic behavior:

Wo(λ) ≃ W∞λQ (log λ)P/2 λ → ∞, W∞ =

√

27V∞
4(16 − 9Q2)

. (2.27)

It presents a good IR singularity for Q < 2
√

2/3, and it is confining for Q > 2/3, or

Q = 2/3 and P > 0. The generic and bouncing solutions, on the other hand, always have

bad singularities.

As we shall discuss in section 5, the special solution is also the only one that can be

obtained in the zero-mass limit of black-hole solutions of the same bulk theory. This gives

another characterization of the special solution, and singles it out as the only physically

sensible choice [29].

Thus, given a potential V (λ) with asymptotics (2.21), there is a single solution with

the large-λ behavior (2.20) corresponding to a “good” singularity. All other solutions have

bad singularities in the IR, and cannot be lifted to black-holes. Requiring the absence of

bad singularities is what ultimately fixes the integration constant of the W equation in the

zero-temperature system, or equivalently, the integration constant of (2.10).

As shown in appendix E.2, changing this integration constant adds a perturbation in

the metric and dilaton that goes as r4 close to the boundary. Thus, this corresponds to

changing the expectation value of the corresponding dimension 4 operator, i.e. TrF 2. In

other words, the integration constant in the superpotential controls the value of 〈TrF 2〉 in

the gauge theory and there is a unique value such that no bad singularities appear.9.

To summarize: the physically interesting situation when a good solution exists and

corresponds to confined color, is the case 2/3 ≤ Q ≤ 2
√

2/3.

3 Finite-temperature solutions and thermodynamics

We now consider the dilaton-gravity system described in the previous section with a good

potential according to the aforementioned criteria and study it at finite temperature T .

As usual, this can be implemented by going to Euclidean signature and compactifying the

Euclidean time (that for simplicity of notation will be still called t) on a circle with period

β = 1/T . This breaks the Poincaré invariance of the vacuum to spatial rotations, and allows

for a larger class of solutions. According to the AdS/CFT prescription, the partition sum

is constructed by considering all solutions with fixed UV boundary conditions.10 From

now on we will introduce a subscript “o” for the quantities related to the zero-temperature

solution.

The thermal solutions are of two types:

8This includes the case when the potential grows faster than (2.24) for any Q, e.g. if V (λ) ∼ ecλ.
9This situation has an analogue in the case of constant potential, V (λ) = 12/ℓ2: also in this case there is

a single “good” solution, AdS5 spacetime with constant dilaton. Even in this theory it is well known [42, 43]

that there is a continuous family of solutions with a running dilaton, all of which have bad singularities in

the interior. This is presented in detail both at zero and finite temperature in appendix B.
10Later in this section we will be more specific about what we mean by “fixed UV boundary conditions.”
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1. Thermal gas solution: this is the same as (2.2),

ds2 = b2
o(r)

(

dr2 − dt2 + dxmdxm
)

, Φ = Φo(r), (3.1)

except for the identification t ∼ t+ iβ. It corresponds to a gas of thermal excitations

above the same vacuum described by the original solution, from which it inherits all

the non-perturbative features (confinement, spectrum, values of condensates, etc. )

2. Black hole solutions: they are of the form

ds2 = b(r)2
[

dr2

f(r)
− f(r)dt2 + dxmdxm

]

, Φ = Φ(r) (3.2)

and are characterized by the presence of a horizon rh where f(rh) = 0. This implies

that such a solution, if it exists, corresponds to a non-confined phase, since the

confining string tension is proportional to Minr(
√

gxx(r)gtt(r)) = 0 [44]. In the

Euclidean version, deconfinement is signaled by a non-zero value of the Polyakov

loop, as discussed in [4]. Since we want to study the theory on S1 × R3 we consider

black-holes with flat horizon topology.

Notice that in general the functions b(r) and Φ(r) appearing in eq. (3.2) are different

from their zero-temperature counterparts, and have also a nontrivial temperature

dependence.

In the rest of this section we will discuss the features of the black-hole solutions to the

general system (2.1), and the thermodynamics in the canonical ensemble.

3.1 5D Einstein-dilaton black holes

We require that the solution has the same UV asymptotics as the one at zero temperature:

an AdS boundary at r = 0 where b(r) ∼ ℓ/r and eΦ vanishes logarithmically; we have to

impose f(0) = 1, so that the black-hole solution (3.2) coincides with the zero-temperature

and thermal gas solutions, (3.1) in the UV limit r → 0.

A black-hole solution with a regular horizon is characterized by the existence of a

surface r = rh, where the dilaton and scale factor are regular, and

f(rh) = 0, ḟ(rh) < 0. (3.3)

The Euclidean version of the solution is defined only for 0 < r < rh. The horizon r = rh

is a regular surface if Euclidean time is identified as τ → τ + 4π/|ḟ (rh)|. This determines

the temperature of the solution as:

T =
|ḟ(rh)|

4π
. (3.4)

The independent field equations are:

6
ḃ2

b2
− 3

b̈

b
=

4

3
Φ̇2 ,

f̈

ḟ
+ 3

ḃ

b
= 0, (3.5)

6
ḃ2

b2
+ 3

b̈

b
+ 3

ḃ

b

ḟ

f
=

b2

f
V. (3.6)

– 16 –



J
H
E
P
0
5
(
2
0
0
9
)
0
3
3

Integrating once the second equation of (3.5), we obtain:

ḟ = −C

b3
, (3.7)

for some integration constant C. This shows that ḟ cannot change sign. For a black-hole,

f(r) has to decrease from f = 1 at the boundary to f = 0 at the horizon, therefore C > 0.

The general solution for f is

f(r) = 1 − C

∫ r

0

dr′

b(r′)3
, (3.8)

where we have chosen the second integration constant so that f(0) = 1.11 Setting C = 0

and f(r) = 1 we recover the zero-temperature Einstein’s equations.

The quantity C is related to the horizon location as:

C =
1

∫ rh

0
dr′

b(r′)3

(3.9)

Note that b(r) is regular in the whole region of integration. We can compute the

temperature by eq. (3.4):

β =
1

T
=

4π

|ḟ(rh)|
= 4πb3(rh)

∫ rh

0

du

b(u)3
=

4πb3(rh)

C
. (3.10)

The horizon area is given by

A(rh) = b3(rh)V3, (3.11)

where V3 is the volume of 3-space, and it is related to the entropy as usual by S = A/4G5.

In the particular case V (Φ) = 12/ℓ2, Φ̇ = 0, we have the AdS-Schwarzschild solution

in Poincaré coordinates,

b(r) =
ℓ

r
, f(r) = 1 −

(

r

rh

)4

, T =
1

πrh
, A =

(

ℓ

rh

)3

V3. (3.12)

Notice that in this case the scale factor is temperature-independent. This is not true in

general: for V depending non-trivially on Φ, different f(r) will result in different b(r).

Near the AdS boundary (UV), this difference can be made more precise:

• As shown in appendix F.3.1, near the AdS boundary b(r) and λ(r) have AdS asymp-

totics, an expansion in inverse logs of the same form as bo(r) and λo(r), eqs. (2.16)–

(2.17), specified by an integration constant Λ. In particular, λ(r) → 0 in the UV for

all the solutions. Fixing the UV boundary conditions therefore, means specifying the

scale Λ appearing in this expansion.

Here, and from now on, by stating that two solutions obey the “same UV boundary

conditions”, we require that “the scale Λ appearing in the expansion in the pertur-

bative UV log must be the same”.12

11Recall that b(r) ∼ r−1 as r → 0, so the second term in eq. (3.8) vanishes at the boundary.
12As it should be clear, it is not enough to specify that the metric be asymptotically AdS and that λ(r)

asymptotes some fixed value as r → 0, since for all solutions λ(0) = 0.
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• Assuming for b(r) and λ(r) the same value of the integration constant Λ, as for bo(r)

and λo(r), then:

b(r) = bo(r)

[

1 + G r4

ℓ3
+ . . .

]

, r → 0, (3.13)

λ(r) = λo(r)

[

1 +
45

8
G r4 log Λr

ℓ3
+ . . .

]

, r → 0 (3.14)

f(r) = 1 − C

4

r4

ℓ3
+ . . . r → 0, (3.15)

where C is defined in (3.7), and G is a temperature-dependent constant with the

dimensions of energy. Eq. (3.15) is obtained from the expression (3.8) and the fact

that b(r) → ℓr−1 as r → 0; eqs. (3.13)–(3.14) will be derived explicitly in section 7.2.

According to the standard rules of the correspondence, the quantity G(T ) is interpreted

(up to a multiplicative constant, to be determined later) as the difference between the vev’s

of the corresponding dimension-four operator in the black-hole and in the vacuum solution.

Since we have assumed that Φ couples to TrF 2 as
∫

e−ΦTrF 2, the appropriate operator

is the gluon condensate λ−1TrF 2. The precise relation between G and 〈TrF 2〉 will be

obtained in section 4.

Integration constants. The quantities C and G are related to two of the five indepen-

dent integration constant of the system of Einstein’s equations. For C, this is clear from

its definition, eq. (3.7): it determines the temperature of the black-hole. G can be regarded

as the integration constant for the thermal generalization of the superpotential equation,

given in appendix F. In the zero-temperature case it was fixed to single out the special

solution, with the “good” IR behavior; in the black-hole it is fixed by the requirement of

regularity of the horizon.13 Two more integration constants are fixed by setting f(0) = 1,

and by choosing the scale Λ in the UV perturbative expansion, i.e. by requiring that the

solution has the same boundary behavior as at T = 0. The last integration constant, as in

the T = 0, is unphysical and is due to reparametrization invariance. It can be eliminated

by rewriting the solution using λ as a coordinate. As we show in appendix F.2, a better

way of counting integration constants is by giving “initial values” directly at the horizon.

This results in the following statement:

For any positive and monotonic potential V (λ) that grows no faster14 than λ4/3 as

λ → ∞, and for any value λh, there exists one and only one black-hole such that:

1. λ → λh at the horizon

2. it has the same UV asymptotics as the zero-temperature solution (2.16)–(2.17)

13In our analysis we cannot determine uniquely what is the value of the gluon condensate in a given

background, but only the differences between TrF 2 in two backgrounds with the same asymptotics. In

order to compute the v.e.v. of the gluon condensate unambiguously in a given background one would need

to perform the full procedure of holographic renormalization, which for the asymptotics we are considering

is not yet fully developed but will be available soon, [49].
14This restriction is necessary to ensure that (vacuum and black-hole) solutions that extend to arbitrarily

large values of λ exist.
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The existence, for each λh, of a black-hole solution with regular horizon that extends

all the way to the UV AdS boundary, is shown in appendix H.4 using the method of scalar

variables. Uniqueness, on the other hand, follows from the discussion in appendix F.2.

Thus, the value of the dilaton at the horizon, λh, is the most natural candidate to

classify the black-holes, and all the thermodynamic quantities like e.g. temperature and

entropy which are single valued functions of λh (the same does not necessarily hold if one

writes them as a function of the horizon position, i.e. T (rh) is not necessarily single valued.

We have found numerically examples of this behavior).

3.2 Thermodynamics

In this section we compute the free energy differences of various solutions at a given tem-

perature. This will allow us to compute all other thermodynamic quantities. The details

of the relevant calculations can be found in appendices C.1 and C.2.

The free energy at fixed temperature β−1 of a given solution is given by:

βF = Sǫ, (3.16)

where Sǫ is the regularized Euclidean action evaluated on the solution. The action needs

to be regularized, due to the divergences near the AdS boundary. To achieve this, we take

3-d space to be a torus with finite volume V3, and cut-off the radial direction in the UV

up to a minimum radius r = ǫ > 0, so all the integrals are limited below by ǫ. Free-

energy differences will be finite (and proportional to V3) as ǫ → 0 since the large-volume

divergences do not depend on the detailed solutions but only on the asymptotics.

As shown in appendix C.1, the regularized Einstein action (2.1) evaluated on a black-

hole solution is:

Sǫ = Sǫ
E + Sǫ

GH + Sǫ
count = 2β σ

[

3b2(ǫ)f(ǫ)ḃ(ǫ) +
1

2
ḟ(ǫ)b3(ǫ)

]

+ Sǫ
count, (3.17)

where we have defined:

σ ≡ M3
p N2

c V3. (3.18)

The counterterm action Sǫ
count is required to make the above expression finite in the limit

ǫ → 0 [45]. As we can see, eq. (3.17) depends solely on the metric evaluated at the UV cutoff:

the contribution to the bulk Einstein action coming from the horizon region vanishes.

Instead of explicitly calculating Sǫ
count, we can define the free energy by subtracting a

given reference background, following the prescription of [46]. We should take as reference

the thermal gas background with the same temperature and the same Λ as the black-hole,

obtained by setting f(r) = 1, and replacing b(r) with bo(r). However, this is correct for

the unregularized action that extends all the way to r = 0. When we deal with regularized

geometries, we must make sure that [46]

(i) the intrinsic geometry of the 4-dimensional boundary be the same for the

two solutions,
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(ii) the boundary values of scalar field, λ and λo are the same.

To satisfy (i), we must demand that the proper lengths of the time circles of the

solutions (3.1) and (3.2) and the proper volume of 3-space be the same at r = ǫ. Denoting

by β̃ and Ṽ3 the period of the time coordinate and the volume of 3-space in the thermal

gas case, this requirements imply:

β̃ bo(r)
∣

∣

∣

cut−off
= β b(r)

√

f(r)
∣

∣

∣

cut−off
, Ṽ3 b3

o(r)
∣

∣

∣

cut−off
= V3 b3(r)

∣

∣

∣

cut−off
. (3.19)

The condition (ii) means that we must require λ(ǫ) = λo(ǫ). This actually implies that

the two backgrounds are characterized by different values Λ and Λ̃ of the scale that defines

the UV boundary conditions. This makes the calculation of differences such as b(ǫ)− bo(ǫ)

quite complicated, since one cannot use directly the UV expansion (3.13), which relies on

the two scales being equal. However, since we are dealing with only one scalar field, we

can equivalently keep Λ̃ = Λ and set the cut-off of the background at a different location

r = ǫ̃, such that15

λ(ǫ) = λo(ǫ̃). (3.20)

Since the cut-off coordinates do not coincide in the two solutions, in the conditions (3.19)

one now has to evaluate each side of the equality at the appropriate value of the coordinate

r. Now we can use eq. (3.14) to determine the needed shift in the boundary positions:

ǫ̃ − ǫ = −45

8

G
ℓ3

ǫ4

λ̇o(ǫ)
= −45

8

G
ℓ3

ǫ5(log ǫΛ)2. (3.21)

The regularized action for the thermal gas background, in the case that the IR singu-

larity is of the good type, is given by:

S̃ ǫ̃ = 2β̃ σ̃
[

3b2
o(ǫ̃)ḃo(ǫ̃)

]

+ S ǫ̃
count, σ̃ = M3

p N2
c Ṽ3. (3.22)

As for the black-hole, eq. (3.22) only receives contributions from the metric evaluated at the

UV cut-off. Indeed, evaluating the Einstein term on shell in general gives an extra negative

term localized in the IR, of the form SIR = 2β̃σ̃b2
o(r0)ḃo(r0) ≤ 0, where r0 is the position

of the singularity in the vacuum background. This contribution vanishes exactly, if r0 is a

good singularity. This is good news, since this means that the details of the physics of the

singular region are irrelevant for the calculation of the free energy (as for other physical

quantities [28]), and only the UV data matter. Similarly a Gibbons-Hawking term at the

singularity (which in principle could be there) also does not give any new contribution,

since on shell it is also proportional to b2
o(r0)ḃo(r0) and it vanishes for good singularities.16

Therefore the free energy (difference) F is:

βF = lim
ǫ→0

(Sǫ − S̃ǫ̃). (3.23)

15This strategy will not work in the case of multiple bulk scalar fields.
16 For a recent example of a similar study, where the free energy does receive contributions from the deep

IR, see [9].
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In the difference above, it is guaranteed that the contribution coming from the counterterms

exactly cancel even at finite ǫ, since these terms are build out of invariants of the induced

boundary geometry and the boundary values of the scalar field.17 Therefore this subtraction

prescription makes it unnecessary to know the explicit form of Scount.

Using the results (3.17) and (3.22) in (3.23), together with the relations (3.19), we

have:

F = σ lim
ǫ→0

{

6b2(ǫ)
√

f(ǫ)

[

ḃ(ǫ)
√

f(ǫ) − b2(ǫ)

b2
o(ǫ̃)

ḃo(ǫ̃)

]

+ ḟ(ǫ)b3(ǫ)

}

(3.24)

Using the UV expansions (3.15)–(3.13) and the relation (3.21) n eq (3.24), and taking

the limit ǫ → 0, we obtain the final result for the free energy,

F = σ

(

15G(T ) − C

4

)

= 15σ G(T ) − 1

4
TS, (3.25)

where the entropy S is given by the area of the horizon:

S =
A

4G5
= 4πσb3(rh) = σ

C

T
. (3.26)

In the second equality we have used eq. (3.18) and G5 = 1/(16πM3
p N2

c ), and in the third

one eq. (3.10).

The black-hole energy E can be obtained either by the thermodynamic formula E =

F + TS = −∂β(βF), or by computing the ADM mass, and consistency requires that the

two computations give the same result. This is indeed the case: as shown in appendix C.3,

the black-hole mass is given by

E = σ

(

15G +
3

4
C

)

= F + TS. (3.27)

The presence of the gluon condensate term in eq. (3.25) is the source of the breaking

of conformal invariance, since in a conformal theory the relation F = −TS/4 is exactly

satisfied. As we will see in section 4, the holographic computation of the conformal anomaly

in flat space matches the field theory result.

Notice that second term in eq. (3.25) is negative for any T . It is the presence of a non-

trivial gluon condensate that may allow a change in sign of the free energy, corresponding

to a first order phase transition. While the calculation of G(T ), in general, is only possible

numerically, in section 5 we will give a general argument to determine whether or not a

given Einstein-dilaton theory exhibits a phase transition at some critical temperature.

Finally, we note that the Gibbons-Hawking term contributes importantly to this ex-

pression. A simple calculation shows that the Einstein term in the action contributes as

FE = −5σG − T S/4 whereas the Gibbons-Hawking contribution is FGH = +20σG. Note

that the Einstein term itself is negative-definite, therefore the GH term is crucial for the

existence of a phase transition. This is unlike the usual Hawking-Page phase transition in

global AdS, where the change in sign of the free energy is due solely to the Einstein term.

17This cancelation may not hold in the case of the counterterms that diverge as log ǫ, i.e. those that give

rise to the conformal anomaly. However, the free energy difference due to these counterterms, if any, is of

the order ǫ4 log ǫ. Therefore these terms do not result in any finite contribution to ∆F
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4 The holographic conformal anomaly (in flat 4-space)

The expectation value of the gluon condensate plays an important role in the thermody-

namics of the system we are investigating. As we will see, it can be related to the thermal

version of the anomalous trace of the stress tensor. In this section we will show that a

holographic calculation of the trace anomaly in flat space to lowest order in λ matches the

four-dimensional result as advocated in [28]. This is a non-trivial check of the validity of

the gauge/gravity duality in our setup, in particular of our identification of the holographic

β-function.

In four-dimensional Yang-Mills theory, breaking of scale invariance is expressed by the

operator equation:

T µ
µ =

β(λt)

4λ2
t

TrF 2, (4.1)

where λt is the 4D ’t Hooft coupling.

Defining the pressure p and energy density ρ,

p = −F
V3

, ρ =
F + TS

V3
, (4.2)

the trace of the thermodynamic stress tensor can be obtained immediately from eq. (3.25):

〈T µ
µ 〉R = ρ − 3p = 60M3

p N2
c G(T ), (4.3)

where we have used the definition of σ, eq. (3.18). The left hand side of (4.3) is the trace

of the renormalized thermal stress tensor, 〈T µ
µ 〉R = 〈T µ

µ 〉 − 〈T µ
µ 〉o, and it is proportional to

G ∼ 〈TrF 2〉, in qualitative agreement with (4.1).

To check the detailed agreement between eqs. (4.1) and (4.3), we need to derive the

precise relation between G and 〈TrF 2〉. In what follows we work to lowest order in λ. To

compute 〈TrF 2〉 holographically, we use the prescription established in [47]: we recall that

for any fluctuation of a bulk scalar with a canonically normalized kinetic term,

Sfluc =
1

2
ℓ−3

∫ √
gd5x(∂χ)2, (4.4)

and coupling to a boundary operator O(x) as

Scoup =

∫

d4xχO, (4.5)

one can read off the vev of the operator O(x) from the UV asymptotics of χ(x, r): if the

UV expansion is of the form

χ ≈ r∆−χ0(x) + r∆+χ1(x), (4.6)

with ∆+ being the canonical dimension of the dual operator, and ∆− = d − ∆+ for a

d-dimensional gauge theory, then the vev of the operator is given by the formula:

〈O(x)〉 = (2∆+ − d) χ1(x). (4.7)
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Now, we apply this prescription to the dilaton fluctuation. In our setup the dilaton Φ

is related to the ’t Hooft coupling λt by eΦ ≡ λ = κλt.
18 The coupling of the dilaton to

the YM field strength is given by

Scoup = −
∫

d4x
1

4λt
Tr F 2 = −κ

4

∫

d4x e−Φ Tr F 2. (4.8)

Thus, the dilaton fluctuation couples as,

δScoup =
κ

4

∫

d4x δΦ e−Φ Tr F 2. (4.9)

From the bulk action (2.1) we learn that δΦ and the canonically normalized fluctua-

tion (4.4) are related by19

χ =

(

8

3
(Mp ℓ)3 N2

c

)
1
2

δΦ. (4.10)

Using the relation eΦ = κλt we find the coupling

∫

d4xχO =

∫

d4xχ

[

κ

4λ

(

8

3
(Mpℓ)

3N2
c

)− 1
2

Tr F 2

]

. (4.11)

The particular dilaton fluctuation we are interested is the difference δΦ = Φ−Φo: this

allows to compute the difference between the thermal and vacuum values of 〈Tr F 2(0)〉.
Notice that this difference is well defined, contrary to e.g. 〈Tr F 2(0)〉o, which suffers from

UV ambiguities. Moreover, it is a purely normalizable fluctuation close to the boundary

(i.e. it only contains terms like the second one in (4.6), since we assumed that the black-hole

and vacuum backgrounds obey the same UV boundary conditions.

The fluctuation δΦ is obtained from eq. (3.14). To leading order in powers of λ (or

equivalently in inverse powers of log(rΛ)):

δΦ ≃ 45

8
G r4

ℓ3
log(rΛ), (4.12)

Recalling the leading dilaton asymptotics (b0λ)−1 = − log(r Λ), and using (4.10)

and (4.12) together with (4.7) and (4.11) yields the relation between G and Tr F 2:

〈Tr F 2〉T − 〈Tr F 2〉o = −240

κb0
M3

p N2
c G. (4.13)

Eq. (4.13) is the holographic computation of the vev of the r.h.s. of the trace iden-

tity (4.1), to leading order in the expansion in λ. Using the expansion β(λ) = −b0λ
2 + . . .

together with the relation λ = κλt, we obtain from (4.13):

β(λt)

4λ2
t

〈TrF 2〉R = 60M3
p N2

c G. (4.14)

18 We will keep the multiplicative constant κ unspecified, as it will drop out of the calculation, i.e.

matching of the anomalies does not depend on the value of κ.
19In doing this computation one should actually use a gauge-invariant fluctuation. This can be defined as

δΦG.I. = δΦ− Φ̇/Ȧδψ, where ψ is the part of the metric fluctuation that couples to Tµ
µ , and is proportional

to δA. However, close to the UV boundary, δψ ∼ r4, δΦ ∼ r4 log r and Φ̇/Ȧ ∼ (log r)−1, therefore

δΦG.I. → δΦ as r → 0.
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which exactly matches the l.h.s, eq. (4.3). This is a nontrivial consistency check of our setup.

Notice that the matching of the conformal anomaly is independent of both κ and b0,

i.e. it is insensitive to the relative normalization of the dilaton field λ with respect to the

true 4D Yang-Mills coupling, λt.

5 Thermal phase transitions

In this section we will derive the building blocks necessary to obtain the main theoretical

result of this paper: confining backgrounds exhibit a first order phase transition, whose

features precisely mimic those of the large-Nc Yang-Mill deconfinement transition. We also

show the converse: non-confining theories do not have a phase transition at finite T .

The primary information we will need to extract is the dependence of the temperature

on the horizon position rh, or better on the value of the dilaton at the horizon, λh. Al-

though this is difficult to obtain for generic λh, it is nevertheless possible to determine the

asymptotic form of T (λh) for λh very small and very large (in a sense that will be defined

below), corresponding to very large and very small horizon area, respectively.

5.1 Horizon in the UV region

As we have discussed in section 3, the black-hole metric approaches asymptotically the

AdS-Schwarzschild solution for small r, with b(r) ≃ ℓ/r and f(r) ≃ 1 − (C/4)r4/ℓ3, and

with a logarighmically running dilaton, λ(r) ≃ (−b0 log rΛ)−1.

For a large enough value of the constant C, f vanishes at a small enough r such

that this approximation is valid all the way to the horizon. In this case, f(r) vanishes at

r4
h ≃ 4ℓ3C−1. This approximation gets better for smaller values of rh (i.e. horizon closer to

the AdS boundary). Then, the temperature and entropy are given approximately by the

AdS formulas (see eqs. (3.12) and (3.26)) :

T ≃ 1

πrh
, S = 4πσ

(

ℓ

rh

)3

, (5.1)

with σ defined by eq. (3.18). These expressions can be converted into functions of λh, by

using the UV asymptotics of λ(r), (2.17) evaluated at the horizon:20

rh ≃ 1

Λ
λ−b

h e
− 1

b0λh (5.2)

In particular, T (λh) is a decreasing function near the boundary.

The relation (5.1) is corrected by the logarithmic running in the UV. Neglecting non-

perturbative contributions, the scale factor is given by eq. (2.16), from which we can

obtain the logarithmic corrections to the thermal function f(r) through eq. (3.8) and (3.9).

Through (3.10) we obtain the corrected relation between T and rh (see appendix D for the

details):

T =
1

πrh

[

1 − 4

9

1

(log rhΛ)2
+ . . .

]

. (5.3)

20This is justified in the limit of small rh (small λh), since as we have discussed in section 3, the deviations

from the zero-temperature solution are O(r4) for small r, so eq. (2.17) is a good approximation all the way

to the horizon.
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The results above allow us to compute the temperature dependence of the term G(T )

in the free energy coming from the gluon condensate. From eq. (3.25) we can write:21

15σ G = F +
1

4
TS = −

∫

SdT +
1

4
TS, (5.4)

where S = 4πσb3(rh). For small rh, we can use the UV asymptotic form for the scale factor,

eq. (2.16), and the relation (5.3), to obtain the asymptotic form of G. The calculation is

carried out explicitly in appendix D, and the result is:

G → π4

45

ℓ3 T 4

(log πT
Λ )2

, T → ∞. (5.5)

This equation has important consequences. It implies that the gluon condensate con-

tribution to the free energy is subleading at large T , by a factor (log T )−2, with respect to

the term TS/4 ∼ T 4. Therefore, for very large BH’s we can write:

F → −TS

4
≃ −(π4σℓ3)T 4, T → ∞. (5.6)

On the other hand, at very high temperatures, pure SU(Nc) Yang-Mills theory behaves

as a free gas with ∼ N2
c degrees of freedom, and its free energy is approximated by the

Stefan-Boltzmann formula22

FYM

V3
≃ −π2

45
N2

c T 4, T → ∞. (5.7)

Comparing the last two equations allows us to fix σ = V3N
2
c /(45π2). From the definition

of σ, eq. (3.18), this is equivalent to fixing the 5D Planck scale in AdS units, in a model

independent way:

(Mpℓ)
3 =

1

45π2
. (5.8)

5.2 Horizon in the IR region

Now, we are going to answer the question: what is the behavior of the function T (rh),

for large rh? We will find that the answer depends exclusively on whether or not the

corresponding zero-temperature solution (more specifically, the special solution in the clas-

sification of section 2) is confining. In the non-confining case, the black-hole temperature

decreases to zero for large rh; on the contrary, for confining theories, T (rh) asymptotically

grows with rh. This distinction has dramatic consequences for the thermodynamics of the

model: as we will show in the next section, it implies that confinement is in one-to-one

correspondence with the existence of a phase transition at a finite Tc.

As a byproduct of our analysis, we will find that when the horizon is deep in the IR (

i.e. the black-hole mass is very small), the black-hole geometry is well approximated by the

21 It is enough to write the relation below as an indefinite integral, since adding a constant does not affect

the result for the high temperature asymptotics (5.5). A more precise relation, with integration limits, will

be given in section 5.2.3
22 This is unlike the case of N = 4 super YM. There the theory in the UV is strongly coupled and a

non-trivial strong coupling calculation is needed to establish the correct coefficient, [48].
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geometry of the zero-temperature special solution (provided it exists). More precisely: the

special solution is the only zero-T geometry that can be lifted to a black-hole of arbitrarily

small mass.

To find the large rh behavior of the black-hole temperature, we must solve eqs. (3.5)–

(3.6) for r and rh “close to the singularity” of the zero-temperature solution. This question

is somewhat ambiguous, since in different zero-T backgrounds the singularity can be at a

finite or infinite value of the conformal coordinates, and it is unclear how exactly to identify

the “asymptoti” region.

A coordinate-independent resolution of this ambiguity consists in solving the equations

using Φ as a radial coordinate, and identifying the asymptotic regions according to the value

of ’t Hooft coupling λ ≡ eΦ. Indeed, in the zero-temperature background this quantity

covers the whole range from 0 in the UV to +∞ in the deep IR, no matter what is

the position of the IR singularity in conformal coordinates. So it makes sense to define

the black-holes whose horizon is in the deep IR (with respect to the zero-temperature

background) as those where λ attains a large value at the horizon. In any given black-hole

solution λ(r) is a monotonically increasing function, and λh ≡ λ(rh) is the maximum value

it can attain. More precisely, we consider “large” λ as the region λ ≫ λ0 such that the

potential V (λ) is well approximated by its asymptotic form:

V (λ) ≃ V∞ λ2Q(log λ)P , λ ≫ λ0, (5.9)

for some real P , and Q ≥ 0. The actual value λ0 of course depends on the specific form

of V (λ). Recall that confining theories correspond to Q > 2/3 or Q = 2/3, P > 0, and

to make sure that there exists a special solution with a good (i.e. repulsive) singularity we

must further restrict Q < 2
√

2/3. The zero-temperature superpotential for such solution

obeys the asymptotics:

Wo(λ) ≃ W∞ λQ(log λ)P/2, λ ≫ λ0 (5.10)

As shown in appendix F.2, the horizon value λh uniquely determines the temperature,

once the UV asymptotics are kept fixed. In the next two subsections we will determine the

behavior of T (λh) for λh in the asymptotic region, λh ≫ λ0. An efficient way to attack

this problem is to generalize the superpotential technique described in section 2 to the

finite-temperature case. This will allow us to give a solution of the system, for large λh, in

the entire large-λ region. Another method that uses diffeomorphism invariant variables is

described in section 7.

5.2.1 Solution in the large-λ region

We will now investigate the features of the black-hole solutions, in the case when the

horizon is deep in the IR. Consider the situation where the horizon value of the ’t Hooft

coupling λh, is large enough to be deep in the IR asymptotic region, λh ≫ λ0, defined in

the previous section.

In this case it is possible to find analytically a good approximation to the solution in

the region λ0 ≪ λ ≤ λh, and to match it to the zero-temperature solution in the part of
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the asymptotic region far from the horizon, λ0 ≪ λ ≪ λh. This will fix all the integration

constants, and give the temperature unambiguously as a function of λh for λh ≫ λ0.

An explicit (approximate) solution for large λh is found by defining a thermal superpo-

tential, i.e. a function W (Φ), that generalizes the zero-temperature superpotential Wo(Φ)

to the black-hole background, such that the scale factor and dilaton equations (in domain

wall coordinates) reduce to the form:

A′(u) = −4

9
W, Φ′(u) =

dW

dΦ
(5.11)

The details of this formalism are developed in appendix F. As shown there, the superpo-

tential W (Φ) and the logarithm g of the thermal function f appearing in the metric satisfy

a pair of coupled differential equations in the variable Φ, which take the form:

(

∂Φg +
∂2

Φg

∂Φg

)

∂ΦW + ∂2
ΦW =

16

9
W, g ≡ log f (5.12)

−4

3
W (∂ΦW )(∂Φg) − 4

3
(∂ΦW )2 +

64

27
W 2 = e−gV (Φ). (5.13)

In these variables the system of Einstein’s equations splits into two separate decoupled

systems, and solving eq. (5.12)–(5.13) determines the metric and dilaton through eqs. (5.11)

solely from the knowledge of W (Φ), as in the zero-temperature case. Here, though, the

superpotential cannot be taken as an independent function, but it depends on temperature

through the coupling to g(Φ) in eq. (5.13)

As shown in appendix F.3.2, the solution of the system (5.12)–(5.13) in the whole

region where (5.9) is valid has the form:

f (Φ) ≃ 1 −
(

Φ

Φh

)R

e−K(Φh−Φ), W (Φ) ≃ W∞ λQ(log λ)P/2 , Φ0 ≪ Φ < Φh,

(5.14)

where the constants K and R are given by:

K ≡
(

16

9Q
− Q

)

; R ≡ −P

2

(

1 +
16

9Q2

)

. (5.15)

More precisely, the approximate equality signs in eq. (5.14) stand for dropping terms of

O(1/Φ) in W and log[1 − f ].

Notice that the asymptotic solution for the superpotential has automatically the same

asymptotics of the special solution Wo(λ), eq. (5.10): the presence of a regular horizon at

large λh has lifted the degeneracy present in the zero-temperature superpotential equation,

selecting a single solution, which happens to be the unique one with the good singularity!

We will come back to this point later in this section, and in section 7.

The approximation W ≃ Wo is valid in the whole asymptotic region. Thus, the metric

and dilaton have the same asymptotics as in the T = 0 case, all the way to the horizon.

Moreover, f(Φ) is very close to unity already in the asymptotic region, specifically where

Φ0 ≪ Φ ≪ Φh. Thus, for all smaller values of Φ, including those outside the asymptotic

region, f(Φ) ≃ 1 and the superpotential equation reduces to the zero-temperature one,
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with special solution Wo(Φ). This implies that W ≃ Wo is a good approximation in the

whole range of Φ, not only asymptotically. The equations (5.11) for the metric and dilaton

therefore reduce to the zero-temperature equations, whose solutions are classified by the

value of the integration constant Λ. This implies that we can fix the remaining integration

constant of the system (the scale Λ) to the same value as in the T = 0 background when we

integrate (5.11). With this choice, all the integration constants in the asymptotic solution

are fixed. Thus, for large λh the complete thermal solution for the scale factor and dilaton

is everywhere well approximated by the zero-temperature form:

A(r) ≃ Ao(r), Φ(r) ≃ Φo(r). (5.16)

From eq. (5.14), expressed in r-coordinates (by setting f(r) ≡ f(Φ(r))), we observe that,

at any fixed r, taking the limit Φh → +∞ brings the metric to match the vacuum form

with f(r) = 1. Therefore the limit λh → ∞ corresponds to the (point-wise) limit of the

black-hole going to the zero-temperature metric.

In the particular case of power-law asymptotic and singularity at r = ∞, corresponding

to Q = 2/3, P = (α − 1)/α (see [28]), the solution for large r is:

A(r) ∼ −
( r

L

)α
, (5.17)

Φ(r) ≃ 3

2

( r

L

)α
+

3

4
(α − 1) log

( r

L

)

, (5.18)

f(r) ≃ 1 −
(

r

rh

)1−α

exp
[

−
(rh

L

)α
+
( r

L

)α]

. (5.19)

where L is the same length scale appearing in the zero-temperature solutions (2.19). The

relation between temperature and horizon position for these black-holes is:

T =
|ḟ(rh)|

4π
=

1

4π

rα−1
h

Lα

[

1 + O

((

L

rh

)α)]

, (5.20)

Notice that, for α > 1, i.e. when the theory is confining, the temperature increases as a

function of rh. In the next section we will see that this behavior is characteristic of general

confining asymptotics.

A no-go theorem. As discussed in detail in appendix E, the asymptotic behavior (5.9)

does not fix uniquely the asymptotics of the zero-temperature solution, but rather allows

various possibilities summarized in appendix E.4. An important conclusion that can be

derived from the discussion above is that black-holes which probe the asymptotic large-λ

region necessarily match the “special” zero-temperature solution with asymptotic (2.27), as

λh → ∞. All other solutions cannot be lifted to black-holes with arbitrarily small mass

(i.e. whose metric is arbitrarily close to the zero-temperature metric) . For an alternative

derivation of the same results, see section 7.5. We thus have the following:

No-go theorem: The only vacuum solutions of Einstein-dilaton

gravity, with a potential satisfying (5.9), that can be continuously

lifted to a regular black-hole with arbitrarily small mass, are the

ones stemming from a superpotential with the “special” asymp-

totics (2.27).
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In particular, this implies that the two continuous families of zero-T solutions with

“generic” and “bouncing” superpotentials (all of which have bad singularities) cannot be

promoted to black-holes with an arbitrarily small mass (i.e. such that the metric looks like

that of those zero-T solutions almost everywhere).

The zero-T superpotentials with bad singularities were already discarded as pathologi-

cal in [28], since they exhibit singularities which are not screened from physical fluctuations,

and do not have a well defined eigenvalue problem. If we subscribe to the criteria laid out

in [29], the no-go theorem above gives another reason to discard these kinds of solutions:

in [29] a singular background was considered acceptable if the singularity can be “hidden”

behind a regular black-hole horizon by an infinitesimally small deformation of the metric.23

5.2.2 Big black-holes and small black-holes

Now, let us determine the temperature of the asymptotic solution obtained, for general P

and Q in (5.9). It is easiest to do so as a function of Φh. We have (see eq. (3.4))

4πT =

∣

∣

∣

∣

df(r)

dr

∣

∣

∣

∣

rh

=

∣

∣

∣

∣

df(Φ)

dΦ

∣

∣

∣

∣

dΦ

du

du

dr
=

[∣

∣

∣

∣

df(Φ)

dΦ

∣

∣

∣

∣

dW

dΦ
eA(Φ)

]

Φh

. (5.21)

The quantities df/dΦ and dW/dΦ are obtained from eq. (5.14). On the other hand, A(Φ)

can be obtained by combining the two eqs. (5.11),

dΦ

dA
= −9

4

d log W

dΦ
≃ −9

4

[

Q +
P

2

1

Φ
+ . . .

]

, (5.22)

which upon integration which gives:

A(Φ) ≃ − 4

9Q
Φ +

2P

9Q
log Φ. (5.23)

Inserting these expressions in eq. (5.21) we obtain:

T (Φh) ≃ KQ

4π
e

(Q2
−4/9)
Q

ΦhΦ
P/2+(2P/9Q)
h Φh ≫ Φ0 (5.24)

From equation (5.24) we deduce that the thermodynamic behavior of black-hole solu-

tions is very different according to the IR confining properties of the zero-T solution:

1. if Q > 2/3, or Q = 2/3 and P > 0 (i.e. the T = 0 theory confines):

the temperature increases with Φh, so very small black-holes (large λh) corresponds

to high temperature solutions.

23The physical reason behind this criterion was that, if the singular background has a holographic inter-

pretation as the zero-temperature vacuum of a 4D theory, then it should be possible to obtain it continuously

as the T → 0 limit of a thermal state, described holographically by a black-hole. This reasoning assumes

that a small black-hole, which is infinitesimally close to the vacuum background, has also an infinitesimally

small temperature. In the following section we will see that this is not necessarily true: there are cases

(e.g. in the presence of a deconfining phase transition at finite T ) when the M → 0 limit of the black-hole

corresponds to a high temperature limit. Thus, in the most interesting cases of confining backgrounds, the

criterion of [29] loses part of its physical motivation.
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(a)

Big black holes Small black Holes

rmin
rh

F

(b)

Figure 1. Typical plots of the black-hole temperature (a) and free energy (b) as a function of the

horizon position rh, in a confining background. The temperature features a minimum at rmin , that

separates the large black-hole from the small black-hole branches.

2. if Q < 2/3, or Q = 2/3 and P < 0 (the T = 0 theory does not confine):

The temperature decreases with Φh, and the limit Φh → ∞ corresponds to T → 0.

Since, in all cases, T decreases with Φh in the UV regime, it follows that:

In confining theories, T (Φh) must have a minimum value Tmin below which there is

no black-hole solution. In this region the only remaining solution is the thermal gas. In

particular, Tmin cannot be zero: this would imply the existence of a point where ḟ = 0, but

from eq. (3.7) we observe that if ḟ vanishes at some point where b is regular, it must vanish

everywhere.

What we have shown implies that confining theories admit (at least) two branches

of black-holes with the same temperature, starting at T = Tmin . For T < Tmin there

are no black-hole solutions, whereas for high enough temperature there are exactly two

black-holes:

1. the big black-hole has its horizon closer to the AdS boundary, satisfying the rela-

tion (5.1),

rbig
h ≃ 1

πT
. (5.25)
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2. the small black-hole has its horizon deep in the interior. With the asymptotics (5.19),

the horizon position is related to the temperature by (inverting (5.20):

rsmall
h ≃ L

(

4π

α
TL

)1/(α−1)

, α > 1 (5.26)

The typical situation (with two branches of solutions) is depicted in figure 1.

Generically, the big black-holes are thermodynamically stable whereas the small black-

holes are unstable. Using cv = TdS/dT and (3.26), we obtain,

dT

dλh
=

3ST

cV

dA

dλh
. (5.27)

If dA(λh)/dλh < 0, the condition for thermodynamic stability i.e. cV > 0 coincides with

dT/dλh < 0, which is true for big black holes; on the other hand for the small black-

holes dT/dλh > 0, hence if A(λh) is monotonic, they have negative specific heat and are

unstable. Although typically dA(λh)/dλh < 0 is satisfied, since generally increasing λh

means going deeper in the IR, it is hard to tell whether this is true for all values of λh:

recall that there is a “hidden” dependence on λh in A(λ), due to the fact that the form

of the scale factor is temperature-dependent. The condition dA(λh)/dλh < 0 is certainly

obeyed asymptotically both for small λh and for large λh, where all black-hole metrics

reduce to the zero temperature solution: for small λh, A(λh) ∼ (b0λh)−1, and for large λh,

A(λh) ∼ −2/3 log λh. However one might have some range of λh where dA(λh)/dλh > 0,

thus the small black-holes are stable, or the big ones unstable. We have found some

numerical evidence of this behavior, where the violation of monotonicity of A(λh) is always

in a very limited range of λh, and only in the small black-hole branch. Since the big black-

holes are the thermodynamically dominant solutions above Tc, we don’t expect them to

become unstable for T > Tc, since the dilaton potentials we use can always be written in

terms of a superpotential: this guarantees the validity of the Positive Energy Theorem [39],

which in turn guarantees stability of the vacuum.

We now illustrate the general behavior just described with a few simple concrete exam-

ples, for which we solved numerically Einstein’s equations, starting from an explicit form

of the dilaton potential. In the case of the explicit potential that was considered in [28],

the numerical results for the thermodynamics were discussed in [30], and they indeed agree

with the general results discussed above. Here we present the result for a simple class of

potentials, which have the IR asymptotics of the form (5.9) for general P and Q:

V (λ)

12
= 1 + λ + V1λ

2Q
[

log
(

1 + V2λ
2
)]P

(5.28)

where we have set the AdS scale to unity. Also, we have set the coefficient of the linear

term to one. This can be done by rescaling λ and redefining the coefficients V1, V2.

The numerical results for the function T (λh) for Q = 2/3, fixed Vi, and various values

of P are shown in figure 2. They confirm our general analysis: confining potentials (P ≥ 0)

feature a minimum black-hole temperature, whereas in non-confining ones (P < 0) the

temperature can be arbitrarily low.
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P=-1
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Λh

0.5

1
THΛhL

(a)

P=1

P=2

0.5 1.0 1.5 2.0 2.5 3.0
Λh

1

2

3

4

THΛhL

(b)

Figure 2. The temperature as a function of the horizon value of λ in the model specified by the

potential (5.28), for Q = 2/3 and various values of P . The other coefficients are fixed to V1 = 10,

V2 = 100. The confining models (P > 0) feature a minimum temperature at finite λh; in the

non-confining model (P = −1) the T (λh) monotonically decreases to zero; In the borderline case

(P = 0) T (λh) decreases monotonically to a finite value as λ → ∞.

As discussed earlier, the temperature is guaranteed to be a single-valued function of λh,

but the same is not necessarily true if we consider T as a function of the horizon position rh.

A rather striking example of this fact is shown in figure 3: it displays the plot of the curve

T (rh) in a case (Q = 2/3, P = 2) where the singularity of the vacuum solution is at a finite

value r0 of the conformal coordinate. For comparison, the curve T (λh) in the same model,

shown in figure 2 (b), is single-valued. One unexpected feature is that in this case there are
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0 ro

rh

THrhL

Figure 3. Temperature as a function of (a) rh in the model (5.28) for Q = 2/3 and P = 2. The

temperature diverges for λh → ∞, for which rh → r0. It is a single-valued function of λh, but not

of rh.

black-holes whose horizon is well beyond the position of the zero-temperature singularity

at r = r0. Nevertheless, as the temperature increases along the small black-hole branch,

we have rh → r0 as expected.

5.2.3 An integral representation for the free energy

As described above, in many cases there are more than one black-hole solutions, some of

them having negative specific heat. This is reflected in the fact that λh (or rh) as a function

of T is generically multi-valued. The formula for the free energy that we derive here will

encompass all of the different branches under one integral representation. This form will be

used to prove the proposition in the next subsection. It is also a very convenient form for

numerical evaluation of the free energy, in the process of determining the thermodynamics

of the system numerically. Here we present the discussion for the case of two branches of

solutions, one small and one big black-hole for simplicity of the presentation. However the

final result is easily generalized to multi-black-hole cases.

Let us denote the free energies of the small and the big black-hole by FS and

FB respectively.

Integrating the first law, S = −dF/dT for the big BH, one obtains,

FB(T ) = Fmin −
∫ T

Tmin

SBdT, T > Tmin (5.29)

where Fmin = F(Tmin).

In order to determine the integration constant in (5.29) one can make use of the same

formula but on the small BH branch. This is clearly suggested from figure 4 where we

depict a generic form for the function F(T ) in case of two-branches. First, note that Fmin
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Figure 4. Black hole free energy

is the same on both branches (see figure 4):

FB(Tmin) = FS(Tmin) = Fmin. (5.30)

Thus one has:

FS(T ) = Fmin −
∫ T

Tmin

SSdT, T > Tmin (5.31)

The small black-hole free energy vanishes in the limit of zero black-hole size (where the

metric coincides with the zero-temperature background), which for confining backgrounds

is the T → ∞ limit. This allows to write Fmin as:

Fmin = −
∫ Tmin

+∞
SS dT, (5.32)

Combining (5.29) with (5.32) one obtains an integral representation for the free energy

that only depends on the area of the horizon, and is valid on both branches. It can be put

in a simpler form in the λh variable. Using (3.26) one obtains,

FB(λh) = −4πσ

∫ λh

∞
b3(λ̃h)

dT

dλ̃h

dλ̃h, λh < λmin, (5.33)

where λmin is the horizon position of the minimum temperature black-hole. Note that the

two branches are combined in the integral as both b and T are single-valued as functions

of λh, but are not as functions of T . In appendix H.10 we present further useful formulas

regarding this integral representation. We remark that r.h.s. of (5.33) is finite everywhere
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except at λh = 0 where FB → −∞. Finiteness near the singularity λh = ∞ follows from the

fact that, for all of the confining cases, b3 vanishes exponentially faster than dT (λh)/dλh.

We note the remarkable fact that the free energy is completely determined by the

knowledge of area of (the small and the big) black-hole horizons. This means that the

entire thermodynamic properties of the dual field theory is encoded in the horizon areas,

as a function of T . We stress that the area of the big BH horizon only is not sufficient;

this misses the integration constant (5.30). It is therefore not sufficient to determine Tc for

instance. An alternative way to say this is as follows: as we showed in eq. (3.25) there are

two contributions to the free energy: the entropy and the condensate. Here we learn that,

we need both branches to disentangle the two contributions.

5.3 Confinement and phase transitions

In this section we show the one-to-one connection between color confinement (in the vacuum

background) and the presence of a deconfining transition:

Proposition:

i. There exists a confinement-deconfinement phase transition at finite T , if and only if

the zero-T theory confines.

ii. This transition is of the first order for all of the confining geometries, with a single

exception:

iii. In the limit confining geometry Ao(r) → −r/L (as r → ∞), the phase transition is

of the second order and happens at T = 3/(4πL).

iv. All of the non-confining geometries at zero-T are always in the black-hole phase at

finite T . They exhibit a second order phase transition at T = 0+.

We outline our demonstration in the coordinate system where λ is chosen as the radial

variable. Being diffeomorphism invariant, our arguments apply to all of the confining

zero-T geometries that are described in section 2.24

We first consider the geometries that confine the color charge at zero T . In section (5.2)

we have shown that there exists an extremum of T (λh) if and only if the zero T theory

confines. Thus, for confining potentials there exists such points λmin that satisfy,

dT

dλh

∣

∣

∣

∣

λmin

= 0 where T (λmin) ≡ Tmin > 0. (5.34)

In figure 5 a schematic plot of T (λh) for the typical examples of confining, non-confining

and the borderline cases is shown.

Now, it follows from the positivity of the entropy and the first law of thermodynamics

S = −dF/dT , that the extrema of T (λh) coincide with the extrema of F(λh). To see this

we write −S = dF/dT = (dF/dλh)/(dT/dλh) and observe that in order for S > 0 at all λh,

24One can state the part iii of the theorem in a diffeomorphism-invariant way by stating that the borderline

geometry is defined as limλ→∞(X + 1
2
) log λ = 0 [28].
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Figure 5. Temperature as a function of λh for the infinite r geometries of the type A → rα. Black

holes exist only above Tmin whose precise value depend on the particular zero-T geometry.

the extrema of T (λh) should coincide with the extrema of F(λh). Hence, for the confining

potentials there exist at least one extremum of F(λh). See figure 6 for a schematic plot

of F(λh).

For simplicity, here we shall assume that there exists a single λmin in the confining

geometries, and no extremum in the non-confining ones. We shall comment on the multi-

extrema cases in the next subsection and carry out a detailed analysis in appendix G.

Let us first reproduce here the integral representation derived in the

previous subsection:

F(λh) = −4πM3V3

∫ λh

∞
b3(λ̃h)

dT

dλ̃h

dλ̃h. (5.35)

The integrand is positive definite for λh > λmin and negative definite for λh < λmin.

Therefore, evaluating it at λmin, one has,

F(λmin) > 0. (5.36)

On the other hand, when one evaluates (5.35) on the boundary, one finds

lim
λh→0

F(λh) = −∞. (5.37)

This follows from the UV asymptotics described in section 5.1. Therefore there must exist

a point λc where it vanishes:

F(λc) = 0, (5.38)

see figure fig, 6. This proves that there exists a phase transition if the zero-T theory confines.

The transition temperature Tc is greater than Tmin because λc < λmin and dT/dλh < 0 at

λc. This result confirms our intuitive picture that, as the temperature is increased, first the
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Figure 6. Free energy density as a function of λh for the infinite r geometries of the type A → rα.

F

T

B

Tc

TG

Figure 7. A schematic plot of the free energy in the typical case of a confining geometry. ”B” and

”TG” denote the big black-hole and the thermal gas respectively. At Tc there is a first order tran-

sition. This plot corresponds to evaluating F (T ) of figure 4 on the minimum energy configuration.

small and big BHs form at a temperature Tmin, where the minimum energy configuration is

still the thermal gas, and as T is kept increasing, the big black-hole takes over the thermal

gas phase at a higher temperature Tc. The true free energy of the system, i.e. the function

F (T ) evaluated on the minimum energy configuration, is shown schematically in figure 7.
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On the other hand, for the non-confining theories (see the case α < 1 in figures 5 and 6),

T (λh) is always monotonically decreasing. This is because, in the UV T ∝ exp[1/b0λh].

Hence it is monotonically decreasing in the UV and there exists no extremum of this func-

tion. Therefore its derivative cannot change sign. From (5.35), it follows that F(λh) < 0 for

all λh and that there is no phase transition for the non-confining potentials at any finite-T .

We have so far proven part i. of the proposition. Parts ii. and iii. are proven as

follows. The order of the phase transition is determined by the latent heat:

Lh = E(λc) = S(λc)T (λc). (5.39)

It follows from (3.26) that, S(λc) is non-zero unless λc coincides with the singularity. There-

fore Lh > 0 and the phase transition is first order for the standard confining geometries.

For example, this is the case for α > 1 in infinite geometries, (see figures 5 and 6).

On the other hand, in the borderline case α = 1, Tc = Tmin and, at λc the entropy

vanishes, because λc coincides with the singularity and b(λc) → 0 there. Thus, in this case

the transition is of second order. It would be interesting to find other examples of second

order phase transitions in the Einstein-dilaton system.

The last part of the proposition follows simply from the fact that, for all the non-

confining geometries, F(λh) < 0 for all λh and it vanishes only at the singularity. At this

point both T and S vanish as the area of the horizon vanishes. Thus there is a trivial

second order phase transition at T = 0+ and the system is always in the black-hole phase

for any finite-T .

5.3.1 Geometries with multiple extrema

We demonstrated our proposition under a single assumption, that the function T (λh) has

at most one single local extremum. We did not find any counter-example to this assumption

in our numerical studies, and it is a logical possibility that, with the given assumptions

for V (λ) (that it is a positive and monotonically increasing function of λ that limits to a

constant at λ = 0 and diverges exponentially as λ → ∞), multiple extrema cases never

occur. However, we can not rule out these possibilities by analytic arguments, therefore

they should be considered in order to complete our demonstration. Moreover, as we discuss

below, they bear interesting possibilities for new types of phase transitions.

In general, there may exist theories which admit more than one small and one big

black-hole. In these cases, the functions F(λh) and T (λh) are complicated and admit

many extrema. As a result F (T ), evaluated on the entire set of solutions (not only the

lowest energy solution) may be a complicated multi-valued function with many cusps and

crossings, see figure 17 in appendix G for an example.

The proof of part i. of the proposition extends without changes to the general case

with multiple extrema. To prove points ii. iii. and iv. in full generality, however, we must

make an additional assumption on the behavior of the entropy as a function of λh: we

must assume that a generic black-hole in a given branch has larger entropy than a generic

black-hole in the next (with larger λh) branch. This is a weak version of monotonicity of
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Figure 8. The function F (T ) for a multiple extrema case, evaluated on the minimum energy

configuration. Here k = 1, i.e. there are two big-black-hole geometries denoted by B1 and B2 with

a first-order transition between them at Tb. TG denotes the thermal gas geometry, that takes over

below Tc.

S(λh), and it is a sufficient condition for the full proposition to hold, although it might not

be necessary.25

The details of the general case are presented in appendix G. The upshot of the analysis

in G is that, regardless how complicated the system is, F (T ) evaluated on the minimum

energy configuration always have a similar form to figure 7 as in the single extremum case.

Since, in the infinite volume limit, only the lowest energy configuration is relevant for

the thermodynamics, our demonstration in the previous subsection directly carries over to

cases of multiple extrema. The precise statement is that regardless how complicated the

function T (λh) is, there exists a confinement-deconfinement phase transition if and only if

the corresponding zero-T theory confines.

However, our analysis in appendix G shows another interesting possibility: in the multi-

ple extrema cases, there may exist first order phase transitions between different deconfined

vacua. The temperature of these transitions are always higher than the deconfinement

temperature Tc. In general, there may be an arbitrary number k, of such transitions with

Tk > Tk−1 > · · ·T1 > Tc. In the dual geometric picture, these transitions occur between

different big black-hole geometries. For a number k of such transitions, the function T (λh)

should possess k local minima and k − 1 local maxima. This means that, there should be

k different pairs of small and big black-holes. This is a necessary condition but it is not

25Strict monotonicity is too strong a condition, since we have found numerical counterexamples where

this is not satisfied.
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sufficient. The sufficient condition follows from the particular shape of F (T ) that leads

to such transitions between different big black-hole branches. An example is discussed in

appendix G. We present the free energy for the minimum energy configuration, for the

case k = 1 in figure 8. The fact the these transitions are always first order follows from

discontinuity in F ′(T ) at Tl, as shown in figure 8 and appendix G.

It was argued that there could be a series of phase transitions in large-Nc gauge theory

that would correspond to a partial, step-by-step breaking of the center ZN of the gauge

group, [33]. At large Nc there is room for an arbitrary number of such steps. The order

parameter corresponding to the l-th such transition would be 〈Tr P l〉, namely the l-th

power of the Polyakov loop. It is plausible that such phase transitions may be in the same

universality class as the ones described above.

Let us remark however, that, neither in the lattice studies of [33] nor in our numerical

investigations, one has encountered such transitions. They may exist as an exotic possibility

in our set-up.

5.4 Similarities with the Yang Mills deconfinement transition

We have found that backgrounds which exhibit confinement, also exhibit a deconfinement

phase transition at some finite temperature Tc, above which the black-hole phase domi-

nates. The qualitative features of the phase transition and of the thermodynamics of the

deconfined phase are remarkably similar to those found in four dimensional pure Yang Mills

theory at large Nc.

Below we list some of the model-independent features of the gravity phase transition

that match the gauge theory side. We will analyze the quantitative agreement in concrete

models in a separate work [36].

• It is a confinement-deconfinement transition. In particular in the high temperature

phase the confining string tension vanishes.

• The Polyakov loop is the order parameter for the confinement-deconfinement transi-

tion of SU(Nc) YM theory. The vev of the Polyakov loop 〈P〉 is zero in the confined

phase and it acquires a non-zero expectation value above Tc. Here we see the analo-

gous behavior in the dual geometric picture [4]: Holographically, the Polyakov loop

is described by a classical string embedding that wraps the Euclidean time direction.

In the thermal gas solution the time circle is non-shrinkable, hence the action of the

string is infinite, giving a zero vev for the Polyakov loop. On the other hand, in the

black-hole solution, the time circle shrinks to zero size at the horizon and one obtains

a non-trivial vev.

• Both in large-Nc Yang-Mills and in the gravity theory the phase transition is first

order, with a latent heat that scales as N2
c . On the gravity side the latent heat per

unit volume is given by (see eq. (3.27))

Lh = N2
c M3

p

(

15G(Tc) + 3πTcb
3(rc)

)

= N2
c

4

3
ℓ−3G(Tc) = N2

c

4π

45
ℓ−3Tcb

3(Tc). (5.40)
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Figure 9. The energy density ρ, entropy density s and pressure p in the black-hole phase for

Tc < T < 5Tc.

• As in large-Nc Yang-Mills, the quantity F/N2
c serves as an order parameter: it is of

order one in the deconfined phase, and zero in the confined phase

• The high temperature behavior is the same of a free gluon gas, up to logarithmic

corrections. This behavior can be seen in the temperature dependence of the pressure

p = −F/V3, energy density ρ, and entropy density s: from eq. (5.6) and standard

thermodynamic relations, and with the choice (5.8) for the Planck scale, we have:

ρ(T )
T 4

3p(T )
T 4

3
4

s(T )
T 3































→ π2

15
N2

c T → ∞. (5.41)

In figure 9 we present an explicit example of the behavior of these quantities in

the deconfined phase, up to a temperature of 5Tc, derived from our model with a

potential of the form (5.28) with Q = 2/3 and P = 1/2.

The deviation from conformality is expressed by the trace of the thermal stress tensor:

ρ − 3p

T 4
→











Lh/T 4
c T → Tc

4π2N2
c

135 (log T/Tc)
−2 T → ∞,

(5.42)

as can be derived by combining eqs. (4.3) and (5.5). A concrete example of the tem-

perature dependence of this quantity in the black-hole phase is shown in figure (10).

• The speed of sound is given by c2
s ≡ (∂p/∂ρ)S = S/Cv, where Cv = ∂E/∂T is the

specific heat. As expected in the deconfined phase of pure Yang-Mills in 4D, this

quantity approaches from below the conformal value, c2
s → 1/3 as T → ∞. This
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Figure 10. Temperature dependence of the trace of the stress tensor in the black-hole phase for

Tc < T < 5Tc.

free gluon gas

0 1 2 3 4 5

T

Tc

0

0.2

1

3

0.4
cs

2

Figure 11. The speed of sound in the black-hole phase for Tc < T < 5Tc.

can be seen using the high-temperature expansion of the thermodynamic quantities

derived in appendix I. A concrete example in our setup is shown in figure 11.

6 The axion background at finite temperature

The effect of a non-trivial vacuum angle in Yang-Mills is captured by including in the

bulk a five-dimensional axion. The axion a is dual to the instanton density Tr[F ∧ F ].

In particular its UV boundary value is the UV value of the QCD θ-angle. Moreover, its

profile a(r) in the vacuum solution may be interpreted as the “running” θ-angle in analogy

– 42 –



J
H
E
P
0
5
(
2
0
0
9
)
0
3
3

with the dilaton, that we interpret as the running coupling constant. This was explained

and justified in [28].

The axion action is suppressed by O(1/N2
c ) with respect to the action for the other

fields, (2.1):

Saxion =
M3

p

2

∫

d5x
√−g Z(λ) (∂µa)2 (6.1)

where Z(λ) has the following asymptotic expansions, [28],

lim
λ→0

Z(λ) = Za [1 + O(λ)] , lim
λ→∞

Z(λ) ∼ λ4 (6.2)

The scale Za determines the topological susceptibility, while the strong coupling asymp-

totics are dictated from glueball universality.

At zero temperature the axion solution that is compatible with known properties of

large-Nc YM is

a(r) = (θUV + 2πk0)

∫ r0

r
dr

e3AZ(λ)
∫ r0

0
dr

e3AZ(λ)

, k0 ∈ Z (6.3)

where θUV is the UV value of the θ parameter defined as an angle in the range [0, 2π),

k0 is an integer that labels oblique confining vacua and is determined by minimizing the

θ-dependent vacuum energy

E(θUV, k) = −
M3

p

2

(θUV + 2πk)2
∫ r
0 dr e−3A

Z(λ)

(6.4)

Finally r0 is the position of the singularity of the zero-temperature geometry in the ra-

dial coordinates.

From this solution we can extract the topological susceptibility and topological density

condensate as

χ =
Z(0)M3

p
∫ r0

0
drZ(0)

e3AZ(λ)

, 〈Tr[F ∧ F ]〉 = −32π2

ℓ3

(θUV + 2πk0)
∫ r0

0 dr Z(0)
e3AZ(λ)

(6.5)

At finite temperature, below the deconfining phase transition the situation is similar to

T = 0, since it is the same vacuum solution describing the physics. Above Tc however, once

should switch to the black-hole solution. In the black-hole solution the axion background

satisfies,

ä +

(

3Ȧ +
ḟ

f
+ (∂λ log Z)λ̇

)

ȧ = 0 (6.6)

an equation that can be integrated once to

ȧ =
Ca

f e3A Z(λ)
(6.7)

where Ca is a constant. Integrating once more we obtain

a(r) = θUV + Ca

∫ r

0

dr′

f e3A Z(λ)
(6.8)
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Unlike the zero temperature solution, the non-trivial solution here has a singularity at the

horizon. Indeed, f(r) ∼ f0(r−rh) while both Z(λ) and eA are regular there. Therefore the

function
∫ r
0

dr′

f e3A Z(λ)
diverges logarithmically as r → rh. Since the background solution

must be regular everywhere, we must necessarily impose Ca = 0.

Therefore in the deconfined phase, the axion background is constant

a(r) = θUV (6.9)

and the topological density condensate (proportional to Ca) vanishes

〈F ∧ F 〉deconfined = 0 (6.10)

In fact this can be generalized to higher derivative terms containing the axion. This shows

that in the deconfined phase, at large Nc all moments of the topological density vanish. This

is in agreement with general expectations at large Nc, since in the deconfined phase such

moments obtain contributions only from instantons, that give vanishing e−Nc contributions

as Nc → ∞. This expectation is in accordance with lattice calculations , [41].

7 Reduction and solution of the system in scalar variables

Einstein’s equations are hard to solve for a generic dilaton potential. This is the case even

in numerical evaluation. Here we shall present a method to reduce the degree of the system

of equations from 5 to 2 by introducing variables that are explicitly invariant under general

coordinate transformations.

There are a number of nice features of this reduction. First, the thermodynamics

will only depend on the reduced system. Therefore all thermodynamic observables are

determined by solving a coupled system of first order equations. This also clarifies the

number of physical parameters in the theory, see section 7.6. It also allows us to find

analytic solutions (appendix J).

Aa another bonus, the UV expansion of the finite temperature metric and dilaton used

throughout the paper, eqs. (3.13)–(3.14) , are most easily derived with this formalism. This

is done in Subsection 7.2.

Finally, this form of Einstein’s equation is used in appendix H.4 to show the existence

of black-hole solutions with arbitrary λh and AdS UV asymptotics.

This section can be read independently of the rest of the paper. All of the ingredients

necessary to derive the thermodynamics from the Einstein’s equations in a diffeomorphism-

invariant manner are presented in this section in a self-contained way.

7.1 Scalar variables

The basic idea was introduced in [28] for the zero-T case and reviewed in section 2. Here we

present a generalization of [28] to the black-hole ansatz. We propose to solve the Einstein’s

equations by introducing the following scalar variables:

X(Φ) =
Φ′

3A′ , Y (Φ) =
g′

4A′ . (7.1)
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Note X and Y are invariant under radial coordinate transformations. These variables obey

the following first order equations:

dX

dΦ
= −4

3
(1 − X2 + Y )

(

1 +
3

8X

d log V

dΦ

)

, (7.2)

dY

dΦ
= −4

3
(1 − X2 + Y )

Y

X
. (7.3)

As shown in section 7.4, the thermodynamics of the dual field theory are completely de-

termined by knowledge of X and Y as a function of Φ. Roughly speaking, Y is dual to the

entropy and X to the energy of the gluon fluid.

It is crucial that the system above always admits a special solution, Y = 0. This

corresponds to the thermal gas solution (or the zero-T solution for non-compact time),

that is present for any V . This is because, for the solution Y = 0, the equation (7.2)

reduces to the corresponding zero-T equation (2.10) whose only solution with fixed IR

asymptotics is the thermal gas.

The metric functions are given in terms of X and Y by integrating eqs. (7.1). Let us

introduce a cut-off Φ0, that plays the role of the regularized UV boundary. We call the value

of the scale factor A at this point as A0. On the other hand, the black-hole asymptotics

requires that g vanishes (f → 1) on the boundary. With these initial conditions, integration

of (7.1) gives

A = A0 +

∫ Φ

Φ0

1

3X
dΦ̃, (7.4)

g =

∫ Φ

Φ0

4

3

Y

X
dΦ̃. (7.5)

We note that one does not need the cut-off Φ0 in solving (7.2), (7.3). As we prove in the

sequel, the physical observables only depend on the functions X and Y . Therefore they

will be independent of the cut-off Φ0.

In appendix H.1 we prove that the reduced X-Y system solves the full equations of

motion (A.17)–(A.20) in the original u-variable. There, we also provide formulas for the

derivatives of the metric functions A′, g′ and Φ′ in eqs. (H.1), (H.2) and (H.3), hence

completing the full five-degree system of equations.

Let us finally note that, one can invert the equations (7.2) and (7.3) for the

dilaton potential:

V (Φ) = V0(1 + Y − X2)e−
8
3

R Φ
−∞

dt(X− Y
2X ). (7.6)

This equation will be useful later on. We note that for Y = 0 it reduces to the corresponding

zero-T equation in [28].

7.2 UV asymptotics

In what follows we prefer working in the λ = exp(Φ) variable instead of Φ.26 The black-

hole deformation is obtained by turning on Y near the boundary. In other words Y should

26For notational simplicity, we shall allow for an abuse of notation by referring to, in fact, different

functions when we write e.g. V (λ) and V (Φ), related by V (x) → V (ex).
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vanish as one approaches the boundary. In addition, the condition that the BH solution

approaches the thermal gas solution requires that X → X0 on the boundary. We recall

that the UV asymptotics of the function X0 is presented in eq. (2.11). Let us now write,

X(λ) = X0(λ) + δX(λ), λ → 0, (7.7)

where δX ≪ X0 for small λ. Studying the small λ asymptotics of the explicit solution

for Y , given in eqs. (H.9, H.10), one learns that Y vanishes non-perturbatively in λ; to be

precise Y ∼ e−4/b0λλ−4b. This can also be seen by assuming that Y is exponentially small

and than solving (7.3) in the vicinity of λ = 0. Then, it follows from (7.2) that δX also

vanishes with the same exponential factor.

One derives the asymptotic behavior of the functions Y and δX by solving (7.3)

and (7.2) near λ = 0. We spare the details of this calculation to appendix H.5. The

result is

Y (λ) = Y0 e
− 4

b0λ (b0λ)−4b, (7.8)

δX(λ) =

[

Y0/2 − C0

X0
+ C0X0

]

e
− 4

b0λ (b0λ)−4b. (7.9)

Here Y0 and C0 are integration constants. They retain finite values as the cut-off is

removed by sending λ0 → 0. These values can be computed by matching the solutions

above to the full solution of (7.2) and (7.3). Generally these integration constants are

non-trivial functions of temperature and this dependence is determined by the regularity

condition at the horizon. This is explained in section 7.3 below.

The physical meaning of these integration constants will become clear below: C0

determines the energy, Y0 determines the entropy and the combination,

G0 = C0 − Y0

2
, (7.10)

determines the vev of the gluon condensate in the gluon plasma.

Finally, we would like to know the UV expansions of the metric functions A, f and Φ

in the radial variable u or r. These can be determined using the asymptotic expressions for

X and Y given by (7.8) and (7.9) in the formulae for the derivatives A′, f ′ and Φ′ given

by (H.1), (H.2), (H.3).

To make use of these equations, we first define the fluctuations in A and Φ in the

domain wall frame as,

δA(u) = A(u) − Ao(u), δΦ(u) = Φ(u) − Φo(u). (7.11)

One then finds:

δA =
1

2
G0e

− 4
b0λ (b0λ)−4b + · · · =

1

2
G0(Λℓ)4e4u/ℓ(−u/ℓ)−16/9 + · · · (7.12)

f = 1 − Y0e
− 4

b0λ (b0λ)−4b + · · · = 1 − Y0(Λℓ)4e4u/ℓ(−u/ℓ)−16/9 + · · · (7.13)

δΦ =
9

4
G0e

− 4
b0λ (b0λ)−4b−1 + · · · =

9

4
G0(Λℓ)4e4u/ℓ(−u/ℓ)−16/9+1 + · · · . (7.14)
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In the last equations we used the results in appendix H.1 to convert the expression in the

u variable, with the scale Λ defined in eq. (2.18).

Finally, we want to write an expression for the fluctuation in the conformal frame

scale factor and dilaton. To this end, we can use the relation (valid close to the UV

boundary r → 0):
r

ℓ
= eu/ℓ (−u/ℓ)−4/9 , (7.15)

see appendix H.1. However, it is not enough to just re-express eq. (7.12) and (7.14) in

terms of r through (7.15): as shown in appendix (A.4) one gets an extra shift in δA when

changing the frame. The final result is:

δA(r) =
2

5
G0(Λr)4, δΦ =

9

4
G0(Λr)4 log rΛ, f(r) = 1 − Y0(Λr)4 (7.16)

Comparison of these expansions to (3.15) and (3.13) relates the coefficients Y0 and

C0 defined quantities G and C that enter in the free energy, eq (3.25) as

Y0 =
Cℓ

4(ℓΛ)4
, G0 =

5

2

Gℓ

(Λℓ)4
. (7.17)

7.3 Asymptotics near the horizon

The dependence on T on the constants C0 and Y0 is determined by the geometry of the

black-hole near the horizon. Near the horizon, the black-hole solution should be regular.

In particular one requires that the various metric functions and the dilaton behave as,

f(r) = f1(rh − r) + O(rh − r)2 (7.18)

A(r) = Ah + A1(rh − r) + O(rh − r)2 (7.19)

Φ(r) = Φh + Φ1(rh − r) + O(rh − r)2 (7.20)

In terms of Y and X, the requirement of regular horizon translates into the follow-

ing conditions:

Y (Φ) =
Yh

Φh − Φ
+ Y1 + O(Φh − f), (7.21)

X(Φ) = −4

3
Yh + X1(Φh − Φ) + O(Φh − f)2, (7.22)

where Y1 and X1 are yet undetermined constants and

Yh = − Φ1

4A1
. (7.23)

When one solves the coupled system of eqs. (7.2) and (7.3) near any point Φi, the

solution will generally be parameterized by two integration constants. At first sight, it

seems that these two parameters can be taken as Yh and Φh. However a more careful look

at the system of equations reveals that demanding a regular horizon reduces the number

of parameters to a single one, that fixes Yh in terms of Φh. This can easily be seen by

substituting (7.21) and (7.22) in (7.2). One obtains:

Yh =
9

32

V ′(Φh)

V (Φh)
. (7.24)
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Similarly X1, Y1, etc. are determined from the sub-leading terms in the expansion near

the horizon. See appendix H.8. One finds the higher order coefficients in the expansion

of (7.21) and (7.22) order by order. The important point is that there is no room for an

arbitrary integration constant, the requirement of a regular horizon completely determines

all of the coefficients in terms of Φh. This shows that we have a single parameter family of

solutions of the X-Y system, parameterized by the location of the horizon Φh.

The near horizon solution presented here is continuously connected to the near UV

solution that is presented in section 7.2. This fact can easily be derived by using the

analytic structure of the equations of motion (7.3) and (7.2). See appendix H.4.

7.4 Thermodynamic functions and relations

The thermodynamics is completely determined in terms of the integration constants C0

and Y0. In the following, we present the derivations one by one.

Temperature. The temperature of the dual gauge theory is given by the derivative of f

at the horizon,

T =
|ḟ(rh)|

4π
. (7.25)

Here, we shall express it in terms of the solution of the X − Y system. The computation

is straightforward and the details are presented in appendix H.9. One finds,

T =
Λ

π
(Λ ℓ)3

Y0(λh)

b3(λh)
. (7.26)

where b(λ) is determined from X by (7.4). This equation gives T in the physical units of Λ.

Entropy. The entropy of the field theory is determined by the area of the horizon as

in (3.26):

S = 4πσb3(λh), (7.27)

where b(λ) is again determined from X by (7.4).

We note that, the equations (7.26) and (7.27) combine to yield the entropic contribution

to the free energy density as follows,

ST = 4σY0ℓ3Λ4. (7.28)

This equation clarifies the physical meaning of the integration constant Y0.

Free energy and energy. One can obtain an exact expression for the free energy in

terms of the scalar variables. This is done by converting the eq. (3.17) in λ using the

equations (H.1), (H.2), (H.3). This calculation is explained in detail in the appendix H.6.

The result is expressed very simply in terms of the constants of motion defined in the

previous section:

F = −pV3 = σΛ4ℓ3 (6C0 − 4Y0) , (7.29)

where the second equation relates pressure to the free energy of the system. Using eq. (7.10)

and (7.17), the above expression coincides with (3.25)
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The energy follows directly from (7.29) and (7.28) as,

E = ρV3 = 6σC0Λ4ℓ3, (7.30)

where we defined the energy density as ρ. This clarifies the physical meaning of the

integration constant C0.

Specific heat. The specific heat is given by,

Cv =
dE

dT
= 6σΛ4ℓ3 dC0

dT
= 4σΛ4ℓ3

(

dY0

dT
− Y0

T

)

. (7.31)

where we used (7.35), see below.

Speed of sound. The speed of sound in the medium is defined by c2
s = dp/dρ, where the

pressure p is given in eq. (7.29). By using thermodynamic relations, one can show that:

c2
s =

S

Cv
. (7.32)

Using (7.31) we can derive a relation for cs directly in terms of Y0:

1

c2
s

=
d log Y0

d log T
− 1. (7.33)

Using the high-T asymptotics of Y0 given in eq. (7.36), we see that c2
s → 1/3 for T/Tc ≫ 1

as required from the conformality in this limit.

We refer the reader to the results presented in appendix I for the high temperature

behavior of the thermodynamical functions discussed in this section.

A relation between C0 and Y0. One can also relate C0 and Y0, by using the definition

of the entropy,

S = −dF
dT

. (7.34)

It follows from (7.34), (7.29) and (3.26) that,

C0(T ) =
2

3
Y0(T ) − 2

3

∫ T

Tc

Y0(t)

t
dt. (7.35)

Therefore, knowledge of Y0 as a function of T determines the coefficient C0 analytically.

Equation (7.35) also helps us determine the thermodynamics at high-T . As T increases,

λh approaches zero, hence the geometry of the black-hole becomes the geometry of an AdS

black-hole. For the AdS black-hole one has, b = ℓ/r, f = 1 − (r/rh)4 and T = 1/πrh.

Therefore from the definition of Y in (7.1), of Y0 in (H.21) and the conversion between λ

and r coordinates near the boundary (H.7) we obtain,

Y0(T ) →
(

πT

Λ

)4 T

Tc
≫ 1. (7.36)
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Using this in (7.35) one obtains,

C0 − Y0/2

T 4
→ 0

T

Tc
≫ 1. (7.37)

We present the explicit high-T behavior of this function in appendix I. We also show

that this implies, through eq. (7.10), that the gluon condensate divided by T 4 vanishes

at high-T .

7.5 Matching the zero-T solution

As we discussed above, the zero-T solutions of the X-Y system correspond to the special

case Y = 0. We analyzed the entire set of solutions in this case, in appendix H.3. The

conclusion of this analysis is a rephrasing, in terms of the scalar variables, of the general

classification in terms of the superpotential that we have discussed in section 5.2.1 and in

appendix E. For any dilaton potential asymptotic freedom in the UV i.e. V (λ) → V0+V1λ+

· · · , as λ → 0 and which exhibits exponential asymptotics in the IR, V (λ) → λ2Q (log λ)P

as λ → ∞, there are three different classes of solutions to X, with different IR behavior

(as λ → ∞):

i. Solutions with “special” type of IR asymptotics: X → −3Q/4. We denote it X∗(Φ),

ii. Solutions with “generic” type of IR asymptotics: X → −1,

iii. Solutions with “bouncing” type of IR asymptotics: X → 0.

The second case is not desired because the fluctuations of the bulk fields fall into the

singularity, hence it is not of repulsive type, whereas the last case corresponds to λ being

a non-monotonic function of the RG scale, hence it can not yield a sensible RG flow.

Therefore we based our holographic construction on the special class, case i.

Now, we consider the black-hole solutions to the same potential, with Y 6= 0. A priori,

there is no guarantee that a regular black-hole solution does not correspond to cases ii or iii

as the deformation is taken away i.e. Y → 0 (by sending the BH horizon to the singularity).

However, as presented in section 5.2.1, we have the following:

No-go theorem: The only vacuum solutions of Einstein-dilaton

gravity, with exponential asymptotics given above, that can be con-

tinuously lifted to a regular black-hole correspond to the special class

of solutions, case i.

In the language of scalar variables, the proof is simple. In the previous subsection, we

gave the condition for regularity of the horizon, eq. (7.24). We can write this in terms of

X(Φ) using eq. (7.22)

X(Φh) = −3

8

V ′(Φh)

V (Φh)
. (7.38)

For all regular BHs one should be able to push the horizon down to the singularity of the

zero-T solution r0, by continuously sending rh → r0. First, we rule out case iii: Since
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V (Φ), V ′(Φ) > 0 for all Φ, one finds from (7.38) that X(Φh) < 0. On the other hand, in

the region close to the singularity in case iii, one finds X > 0, see appendix H.3. Thus,

it is not possible that regular black-holes can be continuously connected to case iii, as

the horizon is taken close to the singularity, Φh → ∞. In this limit, (7.38) clearly fixes

X → −3Q/4. Therefore, the function X exhibits the desired asymptotics of case i.

On the other hand, one can solve for Y in this asymptotic region, using the analytic

solution of (H.10). One finds,

Y (Φ) → ecΦ

C1 − d
c ecΦ

, as Φh ≫ 1 (7.39)

Here c > 0 and d > 0 are given in terms of Q and the location of the horizon is given by

the integration constant C1 as

C1 =
d

c
ecΦh .

We can show that, in the limit Φh → ∞ the entire Y function becomes a spike centered at

Φ = ∞: From (7.3) we observe that the r.h.s. is positive definite, hence Y is a monotonically

increasing function of Φ. From (7.39), it is also clear that Y (Φh) → 0 as Φh → ∞, for

any Φ ≫ 1 but Φ < ∞, in the asymptotic region. Combining these two facts, we learn

that Y (Φ) should vanish for all Φ 6= ∞, including the UV region. On the other hand, it

diverges exactly at Φh = ∞.27

Thus we proved that, in the limit Φh → ∞ of any regular BH, X limits to X∗ and

Y (Φ) → 0 for any Φ < ∞. This corresponds to the zero-T solution Y = 0, with the

integration constant of X equation tuned to X(∞) = −3Q/4. In other words, X(Φ) →
X∗(Φ) in the entire range of Φ as Φh → ∞.

7.6 Parameters of the solutions

Here we examine the integration constants in the Einstein equations for a generic black-

hole solution. We solve the system by requiring the asymptotic behavior of X and Y near

the horizon, as discussed in section 7.3. This solution flows in the UV to X → X0 and

Y → 0 as described in Subsection 7.2. Thus one has a single integration constant Φh from

eqs. (7.2) and (7.3). It determines the temperature by eq. (7.26).

After X and Y are determined, the metric and dilaton are obtained using eqs. (H.1)-

(H.3). The condition g → 0 near the boundary fixes the integration constant in (H.3). The

two remaining constants are λ0 and A0. As described in [28], these combine to determine

the mass scale Λ of the physical system, (2.18). This combination can be viewed as one

integration constant of the two equations (H.1) and (H.2). (The other one is irrelevant due

to a shift symmetry in r, see ([28]).) As we require that the finite-T solution approaches

to the zero-T on near the boundary, the value of Λℓ is determined by the corresponding

value at zero T .

Thus, we conclude that one has only two parameters in the solutions, Λ and λh which

corresponds to the ΛQCD and the temperature. Furthermore, one of them i.e. Λ is completely

27In fact, one can prove that Y (Φ) becomes proportional to δ(Φh − Φ) in the limit Φh → ∞ by using a

limit representation of the delta function. We will not need this here however.
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fixed by the zero-T solution. It is practically set by the mass of the lowest glueball in the

spectrum, see [28].

8 Outlook

In this paper we have analyzed in detail the equilibrium thermodynamics of the 5D Einstein-

dilaton system that was proposed in [28] as a phenomenological holographic dual of 4D

large-Nc pure Yang Mills. There is a variety of possible directions to extend our work.

An example of an explicit background with similar asymptotics, in critical (IIB com-

pactified to 5D) or a non-critical string theory would be desirable. In addition to justifying

our phenomenological set-up based on the principles of AdS/CFT correspondence, this

would allow more detailed studies on the α′ corrections and how they can affect our results

especially in the UV. For the thermodynamics of QCD, the higher derivative corrections

are desirable also for a phenomenological reason: It is well-known [50] that η/s is constant

in any gravitational theory based on a two-derivative action. However, this quantity is ex-

pected to be a non-trivial function of T in QCD that becomes asymptotically large for large

temperatures. The higher derivative corrections may provide the desired T dependence.

Having set the general construction in this paper, a natural step forward is to compute

dynamical observables (bulk viscosity, drag force, jet quenching parameter) that are impor-

tant for the physics of the RHIC collider and the upcoming LHC collider . We will address

this problem in the near future, [34]. Another related issue is the computation of the

various Debye screening masses, where a better comparison with lattice data can emerge.

Another important direction involves the meson sector, that should be introduced

through probe D4+D4 branes in the background. Introduction of baryon chemical potential

is the next very interesting step to analyze. We expect that this will involve the study of

charged black-holes under the overall U(1) gauge field of the flavor branes.
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Bianchi, Francesco Bigazzi, Richard Brower, Aldo Cotrone, Frank Ferrari, Steve Gub-

ser, Gary Horowitz, Thomas Hertog, Edmond Iancu, Frithjof Karsch, David Kutasov,

Hong Liu, Biagio Lucini, David Mateos, Carlos Nunez, Andrei Parnachev, Ioannis Pa-

padimitriu, Edward Shuryak, Kostas Skenderis, Dam Son, Jacob Sonnenschein, Shigeki

Sugimoto, Marika Taylor, Michael Teper, Mithat Unsal, Urs Wiedemann, and Lawrence

Yaffe for discussions. This work was partially supported by ANR grant NT05-1-41861,

RTN contracts MRTN-CT-2004-005104 and MRTN-CT-2004-503369, CNRS PICS 3059

and 3747, Marie Curie Intra-European Fellowships MEIF-CT-2006-039962 and MEIF-CT-

2006–039369, INFN, and by the VIDI grant 016.069.313 from the Dutch Organisation for

Scientific Research (NWO).

Elias Kiritsis is on leave of absence from CPHT, Ecole Polytechnique (UMR du

CNRS 7644).

– 52 –



J
H
E
P
0
5
(
2
0
0
9
)
0
3
3

A Various forms of Einstein’s equations

We use a metric signature (−,+,+,+,+). We start from the action:

S5 = −M3

∫

d5x
√

g

[

R − 4

3
(∂Φ)2 + V (Φ)

]

+ 2M3

∫

∂M
d4x

√
h K (A.1)

with

Kµν ≡ −∇µnν =
1

2
nρ∂ρhµν , K = habKab (A.2)

where hab is the induced metric on the boundary and nµ is the (outward directed) unit

normal to the boundary. e.g. if r denotes the AdS conformal coordinate,

nµ = − 1√
grr

(

∂

∂r

)µ

=
δµ

r√
grr

. (A.3)

The sign of the bulk term is chosen in such a way that 1) in the Euclidean regime,

the scalar field kinetic term is positive definite and 2) the curvature of Euclidean AdS is

negative. With this choice, the sign of the Gibbons-Hawking term is fixed, as usual, by the

requirement that the variation of the action does not contain metric derivatives.

Einstein’s equations are:

Eµν − 4

3

[

∂µΦ∂νΦ − 1

2
(∂Φ)2gµν

]

− 1

2
gµνV = 0, (A.4)

25Φ +
∂V

∂Φ
= 0, (A.5)

with the Einstein tensor defined as,

Eµν = Rµν − 1

2
Rgµν . (A.6)

A.1 Conformal frame

Consider the following ansatz for the metric and dilaton:

ds2 = b(r)2
[

dr2

f(r)
− f(r)dt2 + dxidxi

]

, Φ = Φ(r). (A.7)

with Einstein tensor,

Err =
3ḃ(4f ḃ + bḟ)

2b2f
, Ett = −3f(ḃḟ + 2f ḃ)

2b
, , Eij =

6ḃḟ + 6f b̈ + bf̈

2b
δij , (A.8)

Laplacian,

�Φ =
f

b2
Φ̈ +

f

b2

(

ḟ

f
+ 3

ḃ

b

)

Φ̇, (A.9)

and Dilaton stress tensor,

Trr =
2

3
Φ̇2 +

b2

2f
V , Ttt =

2f2

3
Φ̇2 − b2f

2
V , Tij = −2f

3
Φ̇2 +

b2

2
V. (A.10)
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The equations of motion are:

6
ḃ2

b2
+ 3

b̈

b
+ 3

ḃ

b

ḟ

f
=

b2

f
V, , 6

ḃ2

b2
− 3

b̈

b
=

4

3
Φ̇2, (A.11)

f̈

ḟ
+ 3

ḃ

b
= 0 , Φ̈ +

(

ḟ

f
+ 3

ḃ

b

)

Φ̇ +
3

8f
b2 dV

dΦ
= 0. (A.12)

The second equation in (A.12) is not independent of the other three, and it can

be dropped.

The Ricci scalar is:

R = −2

3
E = − f

b2

[

f̈

f
+ 8

b̈

b
+ 8

ḃ

b

ḟ

f
+ 4

ḃ2

b2

]

(A.13)

A.2 Domain-wall frame

We define,

b = eA, f = eg, (A.14)

and use the domain-wall parametrization of the metric,

dr = e−Adu. (A.15)

In this coordinate frame the metric has the following form:

ds2 = e2A
(

−fdt2 + dx2
)

+
du2

f
. (A.16)

The equations of motion (3.5) and (3.6) in the variable u take the following form:

12A′2 + 3A′g′ − 4

3
Φ′2 − e−gV = 0, (A.17)

A′′ +
4

9
Φ′2 = 0, (A.18)

g′ +
g′′

g′
+ 4A′ = 0, (A.19)

Φ′′ + 4A′Φ′ + g′Φ′ +
3

8
e−g dV

dΦ
= 0. (A.20)

A.3 Dilaton frame

This frame uses Φ (or λ ≡ exp Φ) as the radial coordinate, and it is in some sense “max-

imally gauge fixed,” since only the physical integration constants of Einstein’s equations

appear in the metric. To change variables from u to λ it is useful to define a superpotential

W (Φ), such that eq. (A.18) is written as:

A′ = −4

9
W (Φ), Φ′ =

dW

dΦ
. (A.21)

The coordinate change u = u(Φ) is obtained by inverting the second equation in (A.21).

The existence and properties of the superpotential in the zero-temperature and black hole

– 54 –



J
H
E
P
0
5
(
2
0
0
9
)
0
3
3

case will be extensively discussed in appendices E and F respectively. The solution of

Einstein’s equation in this frame is:

ds2 =
e−g(Φ)dΦ2

(∂ΦW )2
+ e2A(Φ)

(

−eg(Φ)dt2 + dx2
)

, (A.22)

where with a slight abuse of notation we have written g(u(Φ)) ≡ g(Φ) and A(u(Φ)) ≡ A(Φ).

One interesting property of the setup we are discussing is that two different dilaton poten-

tials V (Φ) and Ṽ (Φ), related by Ṽ (Φ) = V (Φ + K) for some constant K give essentially

the same set of solutions and the same physics. First, given a solution (A(u), g(u),Φ(u))

of eqs. (A.17)–(A.20) with potential V (Φ), it is straightforward to show that the functions

(Ã(u), g̃(u), Φ̃(u)) = (A(u), g(u),Φ(u)−K) solve the system with potential Ṽ (Φ). The two

solutions are physically equivalent (except for a change in initial conditions, which as we

know [28] only affects the overall scale). This is easily seen writing the second solution in

the Φ̃-frame:

ds̃2 =
e−g̃(Φ̃)dΦ̃2

(∂Φ̃W̃ )2
+ e2Ã(Φ̃)

(

−eg̃(Φ̃)dt2 + dx2
)

, (A.23)

where W̃ is the appropriate superpotential. However, since Ã(u) = A(u) and g̃(u) = g(u),

it follows that

Ã(Φ̃) = A(Φ), W̃ (Φ̃) = W (Φ), g̃(Φ̃) = g(Φ). (A.24)

Thus, after a change of coordinates Φ̃ → Φ = Φ̃+K the metric (A.23) becomes identical to

the solution of the original system with potential V (Φ), eq. (A.22). The initial conditions

for the two systems, such that the solutions coincide, are related by Ã(Φ0 − K) = A(Φ0).

Thus, there is an “accidental degeneracy” in the classification of Einstein-dilaton grav-

ity by the dilaton potential, since the two potentials V (λ) and V (κλ) lead to the same

physical results. For this reason, the value of the proportionality constant between the

dilaton λ and the physical Yang-Mills coupling λt is irrelevant.

A.4 Relating fluctuations in different frames

In this appendix we work out the relation between the scale factor and dilaton fluctuations

close to the boundary in different frames. For simplicity we set ℓ = 1. Suppose we start

with the zero-temperature and black-hole metrics, both in the domain wall frame:

ds2 =
du2

f
+ e2Au (

fdt2 + dx2
3

)

, ds2
o = du2 + e2Au

o
(

dt2 + dx2
3

)

(A.25)

For clarity, we have added a label (u) to the warp factor. If the two solutions obey the

same boundary conditions at u = −∞, then as shown in section 7.2 the two scale factors

are related, to lowest order, by:

δAu ≡ Au(u) − Au
o (u) ≃ Gu e4u (A.26)

for some constant Gu. The difference between the dilatons, δΦu ≡ Φu(u) − Φu
o(u), can be

related to δA by perturbing equation (A.18), which gives:

(δAu)′′ +
8

9
(Φu

o )′(δΦu)′ (A.27)
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which can be integrated to give:

δΦu ≃ 9

2
Gu (−u)e4u, (A.28)

in agreement with eq. (7.14).

Now we want to obtain the same quantities, namely A−Ao and Φ−Φo, in conformal

coordinates. Naively, one may think that it should be enough to make the replacement

u → log r in eqs. (A.26) and (A.28), since any correction to the relation between u and

r would only affect higher orders in δA and δΦ. This is however incorrect, as a careful

analysis reveals.

What we want to obtain is the difference δAr = Ar(r) − Ar
o(r), where the conformal

warp factors are such that the metrics have the form:

ds2 = e2Ar

(

dr2

f
+ fdt2 + dx2

3

)

, ds2
o = e2Ar

o
(

dr2 + dt2 + dx2
3

)

. (A.29)

Now, it is clear that to bring the two metrics in this form one needs two different coordi-

nate transformations. We can first define e−Au(u)du = dr: if we perform this coordinate

transformation on both metrics we get:

ds2 = e2Au(u(r))

(

dr2

f
+ fdt2 + dx2

3

)

,

ds2
o = e2Au

o (u(r))+2δAu(u(r))dr2 + e2Au
o (u(r))

(

dt2 + dx2
3

)

. (A.30)

So the black-hole metric is in the conformal form, but the zero-temperature one is not. From

the above expression we read off that the function Ar(r) in (A.29) is given by Au(u(r)),

but a similar relation does not hold for Ar
o.

Let us define Ãr
o(r) ≡ Au

o (u(r)). To get the correct scale factor we have to perform a

further coordinate transformation to bring ds2
o in conformal form. We thus define:

(1 + δAu(u(r))) dr = dr̃ ⇒ r̃ = r +
1

5
Gu r5. (A.31)

This transformation brings the metric ds2
o in conformal frame, parametrized by the coor-

dinate r̃, with scale factor given Ar
o(r̃) = Ãr

o(r(r̃)). Using the explicit form of r(r̃), we can

write this as:

Ar
o(r̃) = Ãr

o(r̃ − Gur̃5/5) ≃ Ãr
o(r̃) −

Gu

5
r̃5∂r̃Ã

r
o(r̃) = Au

o (u(r̃)) +
Gu

5
r̃4 (A.32)

In the last step we have used the fact that, to lowest order, Ãr
o(r̃) ∼ − log r. The first and

last steps of the above equality mean that there is an extra shift in Ao, compared to the

naive change of variables. Renaming r̃ → r in (A.32), we finally have:

δAr ≡ Ar(r) − Ar
o(r) = Ar(r) − Au

o (u(r)) − Gu

5
r4 =

4

5
Gur4 (A.33)

This result could have been guessed from the fact that δA is not invariant under linearized

diffeomorphisms r → r + ξ, but rather it transforms as δA → δA + Ȧoξ. For ξ = Gur5/5,

this gives exactly eq. (A.33)
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Following the same procedure, one can write δΦ in conformal coordinates, and one

would find that this time the leading order is simply given by the change of variables

u → log r. The reason is that, under r → r+ ξ, the dilaton fluctuation transforms as δΦ →
δΦ + Φ̇oξ = δΦ + G(r4/5)(log r)−1. Thus the shift induced by the extra diffeomorphism

is subleading with respect to the first term, which behaves as r4 log r. Thus, we have to

leading order:

δΦr(r) ≃ δΦu(u(r)) =
9

2
Gur4 log rΛ. (A.34)

Finally, to connect this discussion with the definition of G given in section 3, let us

define G ≡ 4Gu/5. Then we arrive at:

δAr(r) = Gr4, δΦr =
45

8
Gr4 log rΛ. (A.35)

For consistency, one can check that the above fluctuations solve the linearized Einstein’s

equations in conformal coordinates, obtained by perturbing eq. (A.11).

B The AdS5 case revisited

In this appendix we will reconsider the Einstein system plus a scalar in the conformal case,

with a view of exploring all potential boundary conditions at infinity and their effect in

the bulk physics both at zero and finite temperature. This situation is simpler than the

one we are studying but some of the lessons are similar. Although what we present here is

mostly understood in the literature (see for example [42, 43]), they are not widely known

and we would like to put them in the right perspective.

B.1 Zero temperature

We reconsider the zero temperature field equations (in the conformal coordinate system)

of the Einstein-dilaton system with a potential

6
ḃ2

b2
+ 3

b̈

b
= b2V (Φ) , 6

ḃ2

b2
− 3

b̈

b
=

4

3
Φ̇2 (B.1)

Φ̈ + 3
ḃ

b
Φ̇ +

3

8
b2 dV

dΦ
= 0 (B.2)

We will set the potential to be a constant V = 12
ℓ2 and we will find the UV asymptotics of

solutions for arbitrary initial conditions.

The first equation can be integrated once to yield

ḃ = −
√

C2

b4
+

b4

ℓ2
(B.3)

where we have chosen the minus sign branch so that b decreases with increasing r, and C2

is an integration constant that we set to be positive. When C = 0 the solution is AdS5

b =
ℓ

r − r0
(B.4)
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The constant C, and two extra boundary conditions for the two first order equations (B.3)

and the second one in (B.1) viewed as a first order equation for the dilaton are the full set

of boundary conditions necessary near the boundary.

For general C, the first order equation (B.3) can be integrated as

∫ 1
b

1
b∗

du√
1 + C2ℓ2u8

=
r − r0

ℓ
(B.5)

giving
1

b
F

[

1

8
,
1

2
,
9

8
,−ℓ2C2

b8

]

=
1

b∗
F

[

1

8
,
1

2
,
9

8
,−ℓ2C2

b8
∗

]

+
r − r0

ℓ
(B.6)

where F is the standard hypergeometric function and b∗ = b(r0). The equation for the

dilaton becomes

Φ̇ =
3C

b3
→ Φ(r) = Φ∗ + 3C

∫ r

r0

dr′

b3
= Φ∗ − 3Cℓ

∫ b

b∗

db/b√
ℓ2C2 + b8

(B.7)

→ Φ = Φ∗ +
3

4
ArcTanh

√

1 +
b8

(ℓC)2

∣

∣

∣

∣

∣

b

b∗

where the sign ambiguity is hidden in the sign of C. Note that for the AdS solution the

dilaton is constant. The three integration constants C, b∗,Φ0 are in one-to-one correspon-

dence with the three boundary conditions at the boundary. As explained in [28], one of

them, that we can take to be b∗ is a gauge artifact, related to the position of the boundary

in the radial coordinate. We will therefore choose r0 = 0 to be the position of the boundary,

b∗ = ∞. Then the solution becomes

1

b
F

[

1

8
,
1

2
,
9

8
,−ℓ2C2

b8

]

=
r

ℓ
, Φ(r) = Φ∗ +

3

4
ArcSinh

Cℓ

b4
(B.8)

Near the boundary b8

(Cℓ)2
→ ∞ and we can expand F around zero to find

b ≃ ℓ

r

[

1 − C2r8

18ℓ6
+ O

(

r16
)

]

(B.9)

valid when r → 0. In the same region

Φ = Φ∗ +
3

4

C

ℓ3
r4 + O

(

r12
)

(B.10)

Therefore for non-zero C there is a non-zero vev of the operator dual to the scalar Φ.

Consider now the region b → 0. We use the transformation rule

F

[

1

8
,
1

2
,
9

8
,−ℓ2C2

b8

]

=
Γ
[

1
8

]

Γ
[

3
8

]

8Γ
[

1
2

]

b

(Cℓ)
1
4

− 1

3

b4

Cℓ
F

[

1

2
,
3

8
,
11

8
,− b8

ℓ2C2

]

(B.11)

to obtain

b ≃ (3C(r̂0 − r) + · · · ) 1
3 , r̂0 =

Γ
[

1
8

]

Γ
[

3
8

]

8Γ
[

1
2

] ℓ(Cℓ)−
1
4 (B.12)
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The scalar there diverges as

Φ ∼ log(r̂0 − r) (B.13)

We may use the relations

b̈

b
=

2b2

ℓ2
− 2C2

b6
,

ḃ2

b2
=

b2

ℓ2
+

C2

b6
(B.14)

to calculate the curvature invariant for the metric. We obtain

R = − 1

b2

[

4
ḃ2

b2
+ 8

b̈

b

]

=
12C2

b8
− 12

ℓ2
(B.15)

Near the boundary, b → ∞ and we obtain constant negative curvature as expected. In the

interior, as b → 0, we observe that the space has a curvature singularity, if C 6= 0 at a

distance δr ∼ (Cℓ)−
1
4 from the boundary. Imposing regularity in the bulk imposes C = 0.

Therefore the dynamics of the theory does not allow for a non-trivial vev associate to the

operator dual to Φ.

B.2 The black-hole solution

We will now solve again the equations with constant potential seeking a black-hole type

solution.

6
ḃ2

b2
+ 3

b̈

b
+ 3

ḃ

b

ḟ

f
=

12b2

ℓ2f
, 6

ḃ2

b2
− 3

b̈

b
=

4

3
Φ̇2 (B.16)

f̈

ḟ
+ 3

ḃ

b
= 0 , Φ̈ +

(

ḟ

f
+ 3

ḃ

b

)

Φ̇ = 0 (B.17)

We may integrate once the two last equations as

ḟ = −8C

b3
, Φ̇ =

3D

b3f
(B.18)

and we will take the two constants of integration to be positive D > 0, C > 0. Using this

may derive the following equations for b

(

8
ḃ3

b3
− ḃb̈

b2
−

...
b

b

)

=
2Cℓ2

b5

(

ḃ2b̈

b3
− 2

b̈2

b2
+

ḃ
...
b

b2

)

(B.19)

f

(

2
ḃ2

b2
+

b̈

b

)

= 8C
ḃ

b4
+

4b2

ℓ2
, f2

(

2
ḃ2

b2
− b̈

b

)

=
4D2

b6
(B.20)

We now introduce an auxiliary variable

ζ =

√

√

√

√

√

1 +
4D2ḃ2

(

b6

ℓ2
+ 2Cḃ

)2 ,
√

ζ2 − 1 = − 2Dḃ
∣

∣

∣

b6

ℓ2
+ 2Cḃ

∣

∣

∣

=
2ǫDḃ

(

b6

ℓ2
+ 2Cḃ

) (B.21)
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where ǫ = 1 iff b6

ℓ2
+ 2Cḃ < 0 and ǫ = −1 if b6

ℓ2
+ 2Cḃ > 0, (ḃ is always negative). In terms

of this new variable we obtain

b̈

b
= 2

ḃ2

b2

[

4

ζ + 1
− 1

]

, ḃ =
b6
√

ζ2 − 1

2ℓ2(ǫD − C
√

ζ2 − 1)
(B.22)

which may translated as a first order equation for ζ

bζ ′ =
8

D
(1 − ζ)(D − ǫC

√

ζ2 − 1) (B.23)

where the prime stands for derivative with respect to b. This can be integrated as

(D − ǫC
√

ζ2 − 1)

ζ − 1





√
C2 + D2 − ǫC − D

√

ζ−1
ζ+1

√
C2 + D2 + ǫC + D

√

ζ−1
ζ+1





ǫC√
C2+D2

= C̃b8 (B.24)

Using the relation

(

√

C2 + D2−ǫC−D

√

ζ − 1

ζ + 1

)(

√

C2+D2 + ǫC + D

√

ζ − 1

ζ + 1

)

=
2D

ζ + 1
(D − ǫC

√

ζ2− 1)

(B.25)

the solution can be written in the following alternative form

1

2D

ζ + 1

ζ − 1

(√
C2 + D2 − ǫC − D

√

ζ−1
ζ+1

)1+ ǫC√
C2+D2

(√
C2 + D2 + ǫC + D

√

ζ−1
ζ+1

)−1+ ǫC√
C2+D2

= C̃b8 (B.26)

In particular, for ǫ = 1

1

2D

ζ + 1

ζ − 1

(

√

C2 + D2 − C − D

√

ζ − 1

ζ + 1

)a+ (

√

C2 + D2 + C + D

√

ζ − 1

ζ + 1

)a−

= C̃b8

(B.27)

with

a+ = 1 +
C√

C2 + D2
≥ 0 , a− = 1 − C√

C2 + D2
≥ 0 (B.28)

while for ǫ = −1

1

2D

ζ + 1

ζ − 1

(

√

C2 + D2 + C − D

√

ζ − 1

ζ + 1

)a−
(

√

C2 + D2 − C + D

√

ζ − 1

ζ + 1

)a+

= C̃b8

(B.29)

We will now investigate several special cases of this general solution.

B.2.1 C = 0

The solution becomes
D

ζ − 1
= C̃b8 (B.30)

– 60 –



J
H
E
P
0
5
(
2
0
0
9
)
0
3
3

which using (B.21) becomes

ḃ2 =
1

4C̃2ℓ4

1

b4
+

1

2C̃Dℓ4
b4 (B.31)

Compatibility with the other equations determines C̃ = 1
2Dℓ2

. This solution has no horizon

(f=1). It is the same solution found in the previous subsection, where D plays the role of

the Φ condensate.

B.2.2 D = 0

The equation (B.26) becomes the trivial one ζ = 1. From (B.20) we obtain b̈
b = 2 ḃ2

b2 which

is solved by the AdS scale factor b ∼ 1
r . Finally the rest of the equations give

b =
ℓ

r
, f = 1 − 2Cr4

ℓ3
(B.32)

This is the standard AdS black-hole solution with a flat horizon.

The two previous cases indicate that the constant C controls the temperature of the

solution while the constant D controls the Φ condensate.

B.3 Analysis of the general solution

The function f is given by

f =
2Dℓ2(D − ǫC

√

ζ2 − 1)

b8(ζ − 1)
(B.33)

The boundary b → ∞, is always at ζ = 1. To test whether we have a regular horizon we

need the the trace of the Einstein tensor which is given by

E = − f

b2

[

f̈

f
+ 8

b̈

b
+ 8

ḃ

b

ḟ

f
+ 4

ḃ2

b2

]

=
2

ℓ2

D(3ζ − 13) + 10ǫC
√

ζ2 − 1

D − ǫC
√

ζ2 − 1
(B.34)

To continue we distinguish two cases:

B.3.1 ǫ = −1

There is no horizon in this case as f never vanishes. There is also no singularity as E never

blows up. The scale factor becomes a constant asymptotically

B.3.2 ǫ = 1

The horizon (f = 0) is at

ζh =

√

1 +
D2

C2
(B.35)

It is singular unless D = 0. At the horizon b → 0. Therefore, even at finite temperature

the Φ condensate must vanish in order to have a regular solution.
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C The black hole action and ADM mass

C.1 The on-shell action

We want to compute the regularized action evaluated on a solution of Einstein’s equa-

tions, (A.4). We start from eq. (2.1):

S5 = SE + SGH ,

SE = −M3

∫

d5x
√

g

[

R − 4

3
(∂Φ)2 + V (Φ)

]

,

SGH = 2M3

∫

∂M
d4x

√
h K. (C.1)

We work in conformal frame, with the metric given by eq. (A.7).

Taking the trace of equation (A.4) we obtain for the Ricci scalar:

R =
4

3
(∂Φ)2 − 5

3
V. (C.2)

This leads to the on-shell Einstein action:

SE =
2

3
M3

∫

d5x
√

g V (Φ) =
2

3
M3V3

∫ β

0
dt

∫ rh

0
dr b5 V (Φ)

= 2M3V3

∫ β

0
dt

∫ rh

0
dr

d

dr
(fb2ḃ) (C.3)

From (A.3) the components of the unit normal to the boundary are nr = −b/
√

f ,

ni = 0. The trace of the extrinsic curvature is:

K =

√
f

2b

[

8
ḃ

b
+

ḟ

f

]

(C.4)

We find:

Sǫ
E = 2M3V3

∫ β

0
dt

∫ rh

ǫ
dr

d

dr
(fb2ḃ) = 2βM3V3(f(rh)b2(rh)ḃ(rh) − f(ǫ)b2(ǫ)ḃ(ǫ)) (C.5)

Sǫ
GH = 2M3V3

∫ β

0
dt

b3(ǫ)f(ǫ)

2

[

8
ḃ

b
+

ḟ

f

]

ǫ

= 2M3V3β
b3(ǫ)f(ǫ)

2

[

8
ḃ

b
+

ḟ

f

]

ǫ

= 2M3V3β
b3(ǫ)f(ǫ)

2

[

8
ḃ

b
+

ḟ

f

]

ǫ

(C.6)

Putting together eqs. (C.5) and (C.6) we obtain for the full result:

Sǫ = Sǫ
E + Sǫ

GH = 2βM3V3

[

3b2(ǫ)f(ǫ)ḃ(ǫ) +
1

2
ḟ(ǫ)b3(ǫ)

]

(C.7)

where we used that f(rh) = 0.
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The calculation for the zero-temperature background is exactly the same, except that

the integral of the Einstein-Hilbert action extends on the region (0, r0), where r0 is the

singularity. Thus in evaluating (C.5) one gets:

Sǫ
E = 2βM3V3(b

2
o(r0)ḃo(r0) − b2

o(ǫ)ḃo(ǫ)) (C.8)

The IR contribution vanishes whenever b2
oḃ0 → 0 as r → r0. This is always true for

good singularities.

C.2 Evaluation of the free energy

We start from eq. (3.24), which we rewrite below:

F = σ

{

6b2(ǫ)
√

f(ǫ)

[

ḃ(ǫ)
√

f(ǫ) − b2(ǫ)

b2
o(ǫ̃)

ḃo(ǫ̃)

]

+ ḟ(ǫ)b3(ǫ)

}

(C.9)

where the limit ǫ → 0 is understood. In terms of δb = b − bo, and δǫ = ǫ̃ − ǫ, the previous

equation reads:

F
σ

= 6b2(ǫ)
√

f(ǫ)

[

(ḃo + δ̇b)(ǫ)
√

f(ǫ) − (bo + δb)2(ǫ)

(bo + δǫ ḃo)2(ǫ)
(ḃo + δǫ b̈o)(ǫ)

]

+ ḟ(ǫ)(bo + δb)3(ǫ).

(C.10)

For small ǫ, bo(ǫ) ∼ ǫ/r, and by eqs. (3.13), (3.15) and (3.21) we have:

δb(ǫ) ≃ G ǫ3

ℓ2
, δḃ(ǫ) ≃ G 3ǫ2

ℓ2
, f(ǫ) ≃ 1 − C

4

ǫ4

ℓ3
, δǫ = −45

8

G
ℓ3

ǫ5(log ǫΛ)2. (C.11)

We see that the only divergent contribution inside the square brackets, i.e. ḃo, cancels.

What is left is of order ǫ2 times eventually some logarithmic corrections. Therefore, to

this order we can replace the overall prefactor b2(ǫ)
√

f(ǫ) by ℓ2/ǫ2. Thus, to lowest non-

vanishing order:

F
σ

= 6
ℓ2

ǫ2

[

(

5G +
C

8

)

ǫ2

ℓ2
+ bo(ǫ)δǫ

(

2
ḃ2
o

b2
o

(ǫ) − b̈o

bo
(ǫ)

)]

− C (C.12)

The last term in the parenthesis requires more care: due to the extra logarithm in δǫ we

cannot just replace bo(r) by ℓ/r. On the other hand we can use the zeroth order Einstein’s

equation (A.11) to write it as:

bo(ǫ)δǫ

(

2
ḃ2
o

b2
o

(ǫ) − b̈o

bo
(ǫ)

)

= bo(ǫ) δǫ
4

9
Φ̇2

o(ǫ) = −5

2
G ǫ2

ℓ2
(C.13)

where in the last line we used Φ̇o(ǫ) = −(ǫ log ǫΛ)−1 (cfr. eq. (2.17)). Notice that the

logarithm in δǫ has canceled. Finally, we get:

F
σ

= 15G − C

4
(C.14)
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C.3 The black-hole mass

The mass of a solution, with respect to a reference background, can be defined following

the procedure: first consider a time slicing of the 5-dimensional metric, of the ADM form

ds2 = −N2dt2 + γij(dxi − N idt)(dxj − N jdt) i, j = r, 1, 2, 3 (C.15)

where γij is the induced metric on each 4D slice Σt. Then the mass of the solution, with

respect to a reference background with the same asymptotic behavior at spatial infinity, is

given by [46]

E = − 1

8πG5

∫

Σ∞

N

(

√

γind (3)K −
√

γind
o

(3)Ko

)

(C.16)

where Σ∞ is a 3-dimensional surface at spatial infinity embedded in the 4D constant-time

slice Σt, γind is the three-dimensional induced metric, (3)K is its extrinsic curvature, and

γind
o and (3)Ko the analogous quantities for the reference background. The latter should be

chosen so that the geometry of the 3-dimensional surface at infinity and the value of the

scalar field on that surface match.

In our case, the 5D solutions are static and in conformal coordinates they are of

the form:

ds2 = b(r)2
(

−f(r)dt2 +
dr2

f(r)
+ dxmdxm

)

, ds2
o = bo(r)

2
(

−dt2 + dr2 + dxmdxm

)

.

(C.17)

The boundary at infinity is at r = ǫ, with ǫ → 0. Thus, we have:

N = b(r)
√

f, γijdxidxj = b(r)2
(

dr2

f(r)
+ dxmdxm

)

, (C.18)

and on the surface r = ǫ we have

γind
mn = b(ǫ)2δmn, ni = −

√
f(ǫ)

b(ǫ)

(

∂

∂r

)i

(C.19)

The 3D extrinsic curvature is given by:

(3)K = ∇in
i =

1√
γ

∂j

(√
γγijnj

)

= −3
√

f(ǫ)
ḃ(ǫ)

b2(ǫ)
. (C.20)

The reference background has f = 1, boundary at ǫ̃ = ǫ+δǫ (as in 3.21) so that λ(ǫ) = λo(ǫ̃),

and rescaled volume Ṽ3 = V3b
3(ǫ)/bo(ǫ̃). Also, the time slicing has to be the same, i.e.

N(ǫ) = No(ǫ̃) in the ADM decomposition. Thus from eq. (C.16) we obtain:

E =
3V3

8πG5
b2(ǫ)

√

f(ǫ)

(

√

f(ǫ)ḃ(ǫ) − b2(ǫ)

b2
o(ǫ̃)

ḃo(ǫ̃)

)

(C.21)

Using eqs. (C.11) and performing similar steps to those that led to eq. (C.14) we obtain:

E = M3
p N2

c V3

(

15G +
3

4
C

)

(C.22)

where we have used 16πG5 = M−3
p N−2

c .
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D The gluon condensate asymptotics

We want to show that the gluon condensate G obeys to the asymptotics (5.5) at high

temperatures. To do this we need to compute explicitly the relation between T and rh in

the UV limit rh → 0.

Temperature. Knowing that the expansion for the metric reads as in (2.16) (this is the

zero temperature solution, however the r4 correction of the finite temperature solution is

subleading w.r.t. logarithms) we find that the expansion for the thermal factor f(r) in the

UV is given by solving the second equation in (3.5)

f(r) = 1 − r4

r4
h

[

1 +
4

3

log r
rh

− 4
3

log Λr log Λrh
+ O

(

log(− log Λr)

log2 Λr

)

]

(D.1)

The derivative of f w.r.t. r then evaluates to

ḟ(r) = −4
r3

r4
h



1 +
4

3

log r
rh

− 4
3

log Λr log Λrh
+

1

3

1 + O
(

1
log Λr

)

log Λr log Λrh
+ O

(

log(− log Λr)

log2 Λr

)





(D.2)

The temperature is obtained by evaluating the above expression at the horizon

T =
|ḟ(rh)|

4π
=

1

πrh

[

1 − 4

9

1

log2 Λrh

+ O
(

log(− log Λr)

log3 Λr

)]

(D.3)

Entropy. We now want to calculate the entropy density s = 4πM3b3(rh). Inverting this

relation we get rh as a function of the temperature

rh =
1

πT

[

1 − 4

9

1

log2 Λ
πT

+ O
(

log(− log Λ
πT )

log3 Λ
πT

)]

(D.4)

Plugging this expression into the expansion for the scale factor (5.5) we obtain b as a

function of the temperature

b(T ) = πℓT

[

1 +
4

9

1

log Λ
πT

+ O
(

log(− log Λ
πT )

log2 Λ
πT

)]

(D.5)

The subleading term O
(

log−2(Λ/πT )
)

will not enter into the leading calculation of the

gluon condensate asymptotics. The entropy density evaluates to

s(T ) = 4π4ℓ3T 3

[

1 +
4

3

1

log Λ
πT

+ O
(

log(− log Λ
πT )

log2 Λ
πT

)]

≡ 4π4ℓ3T 3ξ(T ) (D.6)

where the last equality is the definition of the function ξ(T ).
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Gluon condensate asymptotics. Putting together the information relating the gluon

condensate to the free energy on the one hand through eq. (3.25) and, on the other hand,

the free energy to the entropy through F = −∂S/∂T we arrive to an equation for the gluon

condensate

12G(T ) =
Ts(T )

4
−
∫ T

Tc

dt s(t) (D.7)

=π4ℓ3T 4ξ(T ) − 4π4ℓ3

∫ T

Tc

dt t3ξ(t) (D.8)

=π4ℓ3

∫ T

Tc

dt t4ξ′(t) . (D.9)

The last line uses integration by parts. The expansion of the derivative of the function

ξ(T ) reads

ξ′(T ) =
4

3

1

T

1

log2 Λ
πT

(1 + . . . ) (D.10)

The ellipsis indicates subleading terms in the log expansion.

So that finally the gluon condensate expansion at high temperatures T ≫ Λ at leading

order can be written as

G(T ) ≈ π4

36
ℓ3 T 4

log2 Λ
πT

(D.11)

E The superpotential at zero-T

Here we analyze the general solution of the zero-temperature superpotential equation,

eq. (2.7), (below, λ = eΦ).

− 4

3
λ2(W ′(λ))2 +

64

27
W 2(λ) = V (λ). (E.1)

we assume V (λ) > 0 First let us observe some general properties:

1. The solution can only exist as long as |W (λ)| >
√

(27/64)V (λ);

2. The equation has a symmetry W → −W , so we can limit the analysis to W > 0.

3. For any λ0 6= 0, there are two solutions of (E.1), W+(λ),W−(λ) passing through the

point λ0, such that W+(λ0) = W−(λ0), and W ′
+λ0) = −W ′

−(λ0). In other words

there are two branches of solutions: one where W and W ′ have the same sign (i.e.

W ′
+(λ) > 0) , another where they have opposite sign (W+(λ) < 0)

4. At any λ∗ 6= 0 where |W (λ∗)| =
√

27/64V (λ∗), W ′ = 0.

5. A solution can go past such a point λ∗ only if V ′(λ∗) = 0. Indeed, suppose that

V ′(λ∗) > 0. if the solution exists for λ < λ∗, at the point λ∗ we have:

W (λ∗) =
√

(27/64)V (λ∗); W ′(λ∗) = 0 ;V ′(λ∗) > 0

⇒ W (λ∗ + ǫ) <
√

(27/64)V (λ∗ + ǫ) (E.2)

therefore the solution does not exists for λ > λ∗.
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6. By the same argument, if V (λ∗) < 0, the solution does not exist for λ < λ∗.

7. It follows from points 3,4 and 5 that, if V (λ) is positive and monotonic, the two

branches W+(λ) and W−(λ) (see point 4) are completely disconnected, since neither

W ′ nor W can change sign. However two solutions belonging to different branches

can be glued together at a point W ′ = 0.

8. All solutions that reach λ = 0 have either W (0) =
√

(27/64)V (0), or W ′(0) = ∞.

In what follows we assume V (λ) > 0 and without loss of generality we take W (λ) > 0.

E.1 Solution close to a critical point

Let us see how the solution approaches the critical points W ′(λ∗) = 0. For definiteness,

consider V (λ) monotonically increasing, and W (λ) > 0 (as in our model). The solution

exists only for λ < λ∗. As we said there are two disconnected branches with opposite sings

of W ′. Let us are analyze them separately.

W− Branch

In this case, W ′(λ) < 0 for all λ < λ∗. Then eq. (E.1) can be written as:

W ′(λ) = − 4

3λ

√

W 2 − 27

64
V (E.3)

Let us look at this equation close to a point λ∗ 6= 0 where W 2(λ∗) = 27/64V (λ∗) ≡ W 2
∗ .

Write W = W∗ + w(λ), with w(λ∗) = 0, and expand (E.3) to linear order in w(λ):

w′(λ) = − 4

3λ∗

√

2W∗w(λ) − V ′(λ∗)(λ − λ∗) (E.4)

this is still hard to solve explicitly, but we can carry out the analysis by making fur-

ther assumptions about the possible behavior of w(λ) close to λ∗. There are only

three possibilities:

1. |w(λ)| > O(λ − λ∗) as λ → λ∗.

then we can neglect the second term under the square root, and the equation becomes

w′(λ) = − 4

3λ∗

√

2W∗w(λ) (E.5)

which is solved by w(λ) ∼ (λ−l∗)2. This is inconsistent with the assumption |w(λ)| >

O(λ − λ∗), so this case is ruled out.

2. |w(λ)| ≃ −w1(λ − λ∗) as λ → λ∗, with w1 > 0.

Eq. (E.4) becomes:

w′(λ) = − 4

3λ∗

√

(2W∗w1 + V ′(λ∗))(λ∗ − λ), (E.6)

which is solved, for λ < λ∗, by w ≃ const(λ∗ − λ)3/2 , in contradiction with our

assumption. So this case is ruled out too.

– 67 –



J
H
E
P
0
5
(
2
0
0
9
)
0
3
3

40 60
Λ

WHΛL

40 60
Λ

WHΛL

(a) (b)

Figure 12. Superpotential on (a) the W− branch and (b) the W+ branch, close to a critical point.

The black area is the “forbidden” region below the critical curve
√

27V/64, where W ′ would become

imaginary. The solution stops where it meets the critical curve.

3. |w(λ)| < O(λ − λ∗) as λ → λ∗.

In this case we can neglect the first term in the square root, and obtain:

w′(λ) = − 4

3λ∗

√

V ′(λ∗)(λ∗ − λ) (E.7)

which integrates to:

w(λ) ∼ 8

9λ∗

√

V ′(λ∗)(λ∗ − λ)3/2 λ < λ∗ (E.8)

This time the solution is consistent with the hypothesis.

The three possibilities listed above exhaust all possible behaviors of W (λ) close to a

critical point λ∗, and the only one which does not lead to a contradiction is the last one.

Thus, we can conclude that the behavior close to a critical point is given by eq. (E.8). in

other words, W−(λ) is positive and decreasing for λ < λ∗, and it reaches a finite value W∗
at the critical point, where it behaves like

W−(λ) ∼ W∗ + W1(λ∗ − λ)3/2, W1 > 0 (E.9)

The behavior of W−(λ) close to a critical point is exemplified in figure 12 (a)

W+ branch. The analysis is the same as for the W− branch: the solution is defined only

for λ ≤ λ∗, except that W (λ) is increasing and close to λ∗ we have:

W+(λ) ∼ W∗ − W1(λ∗ − λ)3/2, W1 > 0 (E.10)

this type of solution is shown in figure 12 (b)

Metric and dilaton close to a critical point. Although W ′(λ∗) = 0, the metric is

not AdS close to λ∗. In fact, the equation for A(λ) reads:

λ
dA

dλ
= − 3

X(λ)
, X = −3

4
λ

W ′

W
. (E.11)
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Close to the critical point λ∗, X ∼ ∓(3W1/2W∗)(λ∗ − λ)1/2, so the scale factor close to λ∗
is finite, and behaves as

A±(λ) ∼ A∗ ± A1(λ∗ − λ)1/2, A1 > 0 (E.12)

Notice that the upper sign corresponds to the W+ branch (X < 0), in which the scale

factor decreases towards the endpoint λ∗, which is therefore in the IR.The other branch

W−(λ) (X > 0) has λ = λ∗ as the UV.

Finally, we can integrate the dilaton equation as a function of the coordinate r,

λ̇

λ
= λ

dW

dλ
eA. (E.13)

Using the form of A(λ) and W (λ) close to λ∗, eqs. (E.12), we arrive at:

λ(r) ∼ λ∗ − λ1(r∗ − r)2, A±(r) ∼ A∗ ± A1|r∗ − r|, λ1 > 0, A1 > 0 (E.14)

Here the upper sign holds for r < r∗, the lower for r > r∗. From the last equation, we see

that in the r coordinate the point r∗ where λ(r∗) = λ∗ is perfectly regular, and we can

obtain a full solution describing both branches by simply removing the absolute value,

λ(r) ∼ λ∗ − λ1(r∗ − r)2, A(r) ∼ A∗ + A1(r∗ − r), λ1 > 0, A1 > 0 (E.15)

At the critical point the dilaton reaches its maximum value λ∗, then reverts the direc-

tion of running, and is not a good coordinate globally. Instead A(r) is monotonic along

the full solution. The UV corresponds to r < r∗, the IR to r > r∗.

E.2 Solutions close to λ = 0

Here we still have two branches, but we have two completely different behaviors in each

branch. Assume V > 0, V ′ > 0 close to λ = 0, and a power expansion of the form:

V = V0 + V1λ + V2λ
2 + . . . (E.16)

W
−

branch. In this case the general solution of eq. (E.1) close to λ = 0 is:

W−(λ) ∼ W0

(

C

λ4/3
+

λ4/3

C
+ W1

λ4/3+1

C
+ . . .

)

, C > 0 (E.17)

where W0 and W1 are completely fixed by the expansion coefficients of V (λ) around zero.

Since W− is a decreasing function for small λ, from our general considerations we know

that if V (λ) is monotonic then W−(λ) is monotonically decreasing globally, therefore the

solution will hit a critical point at some λ∗ > 0 and terminate.

Solving the metric and dilaton equations in the region λ ∼ 0 with the superpoten-

tial (E.17) gives a singularity at a finite value r = r0 of the conformal coordinate, where

both the scale factor a(r) → 0 and the dilaton λ → 0.

eA(r) ∼ (r0 − r)
1
3 , λ(r) ∼ (r0 − r)

1
2 . (E.18)

We see that eA(r) decreases to zero as λ(r) → 0, and l̇/Ȧ > 0. With our holographic

dictionary, (log A ↔ E and β(λ) = l̇/Ȧ, we conclude that Therefore in this case the small

λ region is in the IR, and the theory is IR-free.
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W+ branch. In this branch, any solution of (E.1) necessarily satisfies

W+(0) =

√

27

64
V0 (E.19)

(one can show that any ansatz with W ′(0) = +∞ cannot solve the equation).

Moreover, if W is written as a power series expansion around λ = 0,

W (λ) = W0 + W1λ + W2λ
2 + . . . (E.20)

then all the coefficients Wi are uniquely determined by the expansion coefficients Vi of V (λ).

However, it is incorrect to conclude that that the solution in this branch is unique. To see

this, take any function Ŵ (λ) that solves (E.1) to all orders in powers of λ. Then, consider

a function W (λ) that, close to λ = 0, behaves as

W (λ) = Ŵ (λ) + w(λ),
w(λ)

Ŵ (λ)
→ 0 as λ → 0. (E.21)

Inserting this in the eq. (E.1), and expanding to linear order in w(λ) gives, close to λ = 0:

− 4

3
2λ2Ŵ ′(0)w′(λ) +

64

27
2Ŵ (0)w(λ) = 0 (E.22)

i.e. a homogeneous, linear equation, whose general solution is

wC(λ) = Cλ16/9−4b exp

[

−16

9

Ŵ (0)

Ŵ ′(0)

1

λ

]

(E.23)

Therefore, also in the W ′ > 0 branch we have a one-parameter family of solutions, that

close to λ = 0 all have the same power expansion, and look like:

W (λ) = Ŵ + wc(λ) + . . . (E.24)

where Ŵ is a fixed power series (say, with no exponential part), wc(λ) is given in eq. (E.23),

and the dots represent even more subleading terms (∼ w2).

Due to the expasion (E.20), the solution close to λ = 0 is, to leading order, an AdS5

spacetime with logarithmic running,

b(r) =
ℓ

r

[

1 +
4

9

1

log rΛ
+ . . .

]

, λ(r) = − 1

b0 log rΛ
+ . . . (E.25)

Notice that the exponent in (E.23) is fixed by the first two expansion coefficients of V (λ),

and one can easily show that, in terms of the β-function coefficient b0:

16

9

Ŵ (0)

Ŵ ′(0)
=

4

b0
⇒ wc ∼ λ16/9−4be

− 4
b0λ , (E.26)

Using the perturbative asymptotics b0λ ∼ (log r)−1 , this corresponds to a power-law cor-

rection to the logarithm expansion in (E.25), that scales like r4 close to the AdS boundary

r = 0. Since the power series expansion of W (λ) around λ = 0 is independent of the

integration constant C in (E.23), we conclude that metric that correspond to different so-

lutions on the W+ branch differ only by non-perturbative O(r4) terms, which correspond

to different values for the gluon condensate.
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E.3 Solutions close to λ = ∞

Finally we analyze the solution of (E.1) in the asymptotic region of large λ. We assume

for the potential a power-law behavior

V (λ) ∼ V∞λ2Q(log λ)P λ → ∞ (E.27)

for some constant V∞ and Q > 0. We are interested in V∞ > 0, since this case corresponds

to a potential which is bounded from below. There are two kinds of solutions:

1. a continuous one-parameter family of the form:

WC(λ) = W∞

[

Cλ4/3 +
C−1

(4 − 3Q)
λ2Q−4/3(log λ)P + . . .

]

, W∞ =

√

27V∞
64
(E.28)

where C is an arbitrary constant of integration;

2. a single solution that asymptotes as

Ws(λ) = W̃∞λQ(log λ)P/2, W̃∞ =

√

27V∞
4(16 − 9Q2)

(E.29)

Notice if V∞ > 0, both types of solutions exist only if Q < 4/3: for Q > 4/3 the l.h.s. of the

differential equation is asymptotically negative. In this case there is no solution that reaches

arbitrarily large values of λ, but rather all solutions to (E.1) are of the type described in

section (E.1): they reach a maximum value λ∗ where a W+ and a W− solutions join.

With the restriction Q < 4/3 the first term in eq. (E.28) is the dominant one, and the

singular solution grows slower than any of the solutions in the continuous family.

For all superpotentials in the continuous family the metric and dilaton exhibit the

same kind of IR singularity at finite r (where a(r) → 0, λ(r) → ∞) , regardless of the value

of Q and P :

a(r) ∼ (r0 − r)1/3, λ(r) ∼ 1

(r0 − r)1/2
. (E.30)

This is similar to the singularity in eq. (E.18), up to λ → 1/λ. These singularity always

fall in the pathological class, as discussed in ([28]): the singularity is not screened from

physical fluctuations, and one can have an infalling flux of particles. Moreover, as shown

in appendix F, these singularity do not appear as continuous limits of black-hole solutions

with regular horizons.

On the ohter hand the singular solution (E.29) is the most interesting from a physical

point of view: the singularity is repulsive for Q < 2
√

2/3 and it can be cloaked by a horizon.

Solutions of this kinds are the ones that give rise to the most interesting holographic

constructions from the QCD perspective.
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Figure 13. Superpotential of the “generic” kind. The black area is the forbidden region below the

curve
√

27V/64

E.4 General classification of the solutions

The results of this appendix can be summarized as follows: For any positive and monotonic

potential V (λ) with the asymptotics:

V (λ) = V0 + V1λ + V2λ
2 + . . . V0 > 0, λ → 0

V (λ) = V∞λ2Q(log λ)P , V∞ > 0, λ → ∞

the zero-temperature superpotential equation has three types of solutions, that we name

the Generic, the Special, and the Bouncing types: :

1. A continuous one-parameter family that has a fixed power-law expansion near λ = 0,

and reaches the asymptotic large-λ region where it grows as

W ≃ Cbλ
4/3 λ → ∞ (E.31)

where Cb is an arbitrary positive real number These solutions lead to backgrounds

with “bad” (i.e. non-screened) singularities at finite r0, where b(r) → 0 and λ → ∞ as

a(r) ∼ (r0 − r)1/3, λ(r) ∼ (r0 − r)−1/2 (E.32)

We call this solution generic. An example is shown in figure 13

2. A unique solution, which also reaches the large-λ region, but slower:

W (λ) ∼ W∞λQ(log λ)P/2, W∞ =

√

27V∞
4(16 − 9Q2)

(E.33)

This leads to a repulsive singularity, provided Q < 2
√

2/3 [28]. We call this the

special solution. An example is shown in figure 14
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Figure 14. Superpotential of the “special” solution. The black area is the forbidden region below

the curve
√
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Figure 15. Superpotential of the “bouncing” kind. The black area is the forbidden region below

the curve
√

27V/64

3. A second continuous one-parameter family where W (λ) does not reach the asymptotic

region. These solutions have two branches that both reach λ = 0 (one in the UV,

the other in the IR) and merge at a point λ∗ where W (λ∗) =
√

27V (λ∗)/64. The IR

branch is again a “bad” singularity at a finite value r0, where W ∼ λ−4/3, and

b(r) ∼ (r0 − r)1/3, λ(r) ∼ (r0 − r)1/2. (E.34)

We call this solution bouncing. An example is shown in figure 15

Notice that, as two solutions with positive derivative cannot cross, the special solution

(figure 14) marks the boundary between the generic solutions, that reach the asymptotic

large-λ region as λ4/3 (figure 13) and the bouncing ones, that don’t reach it, figure 15.

Notice that, if Q > 4/3, only bouncing solutions exist.

In all types of solutions the UV corresponds to the region λ → 0 on the W+ branch.

There the behavior of W+ is universal: a power series in λ with fixed coefficients, plus a
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subleading non-analytic piece which depends on an arbitrary integration constant Cw:

W =
∞
∑

i=1

Wiλ
i + Cwλ16/9e

− 16W0
9W1 [1 + O(λ)] (E.35)

All the power series coefficients Wi are completely determined by the coefficients in the

small λ expansion of V (λ), the first few being:

W0 =

√
27V0

8
, W1 =

V1

16

√

27

V 0
, W2 =

√
27(64V0V2 − 7V 12)

1024V
3/2
0

(E.36)

F The superpotential at finite T

F.1 The thermal superpotential

A useful way of counting the integration constants and to parametrize the different black-

hole solution is to extend the notion of superpotential to the black-hole backgrounds. We

will call the resulting thermal superpotential W (Φ), and its zero-temperature precursor

Wo(Φ).

First, we define

b = eA, f = eg, (F.1)

and use the domain-wall parametrization of the metric,

dr = e−Adu. (F.2)

In this coordinate frame the metric has the following form:

ds2 = e2A
(

−egdt2 + dxmdxm
)

+ e−gdu2. (F.3)

The equations of motion (3.5) and (3.6) in the variable u take the following form (a prime

denotes derivative w.r.t. u):

A′′ +
4

9
Φ′2 = 0, (F.4)

g′ +
g′′

g′
+ 4A′ = 0, (F.5)

12A′2 + 3A′g′ − 4

3
Φ′2 − e−gV = 0, (F.6)

Equation (F.4) is the same as in the zero-temperature system, cfr. eqs. (2.6). This

has an interesting consequence: we recall that (F.4) is the equation that guarantees a well-

defined arrow of the RG flow in the gauge theory. Here we see that one can define the RG

flow in the same way in the gauge theory at finite-T . In other words, the conclusion that

A(u) is monotonically decreasing still holds at finite temperature.

Since eq. (F.4) takes the same form as when g(r) = 0, we can use this equation to

define a superpotential just as for T = 0: the second order equation (F.4) can be replaced
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by the two first order equations, and the system becomes:

A′ = −4

9
W (Φ) , Φ′ =

dW (Φ)

dΦ
, (F.7)

g′′ + g′2

g′
=

16

9
W (Φ) (F.8)

−4

3

(

dW (Φ)

dΦ

)2

+
64

27
W (Φ)2 − 4

3
W (Φ) g′ = e−gV (Φ). (F.9)

Equations (F.7) provide the definition of the thermal superpotential W (Φ).

F.2 Counting integration constants: uniqueness properties of BH solutions

The system (F.7)–(F.9) has to be solved for the functions A,Φ, g,W once V (Φ) is given as

input. As in the T = 0 case, once W (Φ) is given the scale factor and dilaton are uniquely

fixed up to a single physical integration constant (a choice of scale) However, now W (Φ)

is not simply a solution of a first order equation, as in (2.7). Since we cannot decouple the

equation for W , we cannot choose it as an input as we did in the T = 0 case.

As it turns out, the most natural place where to fix the integration constants is the hori-

zon, rather than the boundary. In other words, the general solution of the fifth order sys-

tem (F.7)–(F.9) is most easily parametrized by the horizon value of the functions involved.

Consider a black-hole with a regular horizon located at u = uh. As we ap-

proach the horizon, u → uh, the dilaton, the scale factor and the superpotential have

regular expansions,

A → Ah − (uh − u)A′(uh) + . . . , λ → λh − (uh − u)λ′(uh) + . . . ,

W → Wh − (uh − u)λ′(uh)∂λW (λh), (F.10)

where Wh ≡ W (λh). On the other hand close to the horizon we must have have:

g = log(uh − u) + gh + O
(

(uh − u)2
)

, u → uh (F.11)

where gh = log[−f ′(uh)]. Substituting these values in equation (F.9) we see that regularity

at the horizon requires the condition:

Wh =
1

3
e−ghV (λh). (F.12)

On the other hand, the quantities Ah, λh and gh are free. The differential equation deter-

mines the following terms in the expansion around uh in terms of these quantities, and of

V (λ) and its derivatives at λh.

We can use the horizon quantities to fix all integration integration constants of the

system (F.7)–(F.9). The system is first order in A(u),Φ(u) and W (u), and second order

in g(u), therefore it contains five integration constants. One of them is un-physical, and

it is due to reparametrization invariance. It can be eliminated by using λ in place of u as

a coordinate, or it can be fixed by setting uh to an arbitrary value. The four quantities

λh, Ah, gh,Wh provide the remaining four integration constants. For an arbitrary choice
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the solution will be singular at the horizon, whereas regularity is assured by imposing the

constraint (F.12).

Notice that the value of the potential at the horizon has to be positive in order to get

a well-behaved black-hole solution. This is similar to Gubser’s criterion identifying good

singularities [29].

What we have shown above means that the theory has a three-parameter family of

regular black-hole solutions, characterized by the three real numbers λh, Ah, gh. However,

since the initial conditions were set at the horizon, these solutions will not all have the same

UV asymptotics. To understand what happens in the UV, u → −∞ in these coordinates),

notice that close to uh we have W (u) > 0, g′(u) < 0. Moreover by eq. (F.8), g′′(u) < 0

as long as g′(u) < 0 and W > 0. Thus, |g′(u)| decreases as we go further away from the

horizon. As a consequence, the extra term −Wg′ in (F.9), that did not appear in the

zero-temperature equation (2.7), become less and less important as we move away from

the horizon towards the asymptotic region. At the same time due to the relative signs of g′

and g′′, g(u) approaches a constant value g0, and the r.h.s. of eq. (F.9) approaches the r.h.s.

of (2.7) up to a multiplicative constant. Therefore the solution will get closer and closer

to one of the zero-temperature solutions, up to a rescaling of W (Φ): W (λ) → eg0/2Wo(λ)

as λ → 0. The existence of a solution that connects the horizon to the UV boundary will

be proved more rigorously in appendix H.4.

This is not the end of the story, since we want the the black-hole solution to have the

same UV asymptotics as the zero-temperature solutions. Notice however that eqs. (F.7)–

(F.9) are invariant under the two following independent transformations:

λ(u), A(u), g(u),W (u) → λ(ue−δ1), A(ue−δ1), g(ue−δ1) − 2δ1, e
δ
1W (ue−δ1) (F.13)

λ(u), A(u), g(u),W (u) → λ(u), A(u) + δ2, g(u),W (u) (F.14)

where δ1,2 are arbitrary real numbers. These transformations map a solution into another

solution, and also preserve the regularity condition (F.12). Therefore one can use these

transformations to move in the space of solutions, and reach the one with the desired

asymptotics. Specifically, one can construct a regular UV black-hole solution with UV

asymptotics matching a given T = 0 background in the following way:

1. choose an arbitrary horizon position uh and fix arbitrary values for the initial data

at the horizon, namely Ah, gh, λh

2. fix the fourth initial data, Wh, according to the regularity condition.

3. Evolve the solution from the horizon to the UV. In general, as u → −∞, g(u) will go

to a constant gUV 6= 0.

4. Use a symmetry transformation with parameter δ1 = gUV/2. In the new solution g

goes to the correct UV limit (namely, zero).

5. Use a δ2 transformation to reset the overall scale of the solution to the desired value

(e.g. to match a given T = 0 solution). (This does not affect g(u))
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At the end of this procedure, the only free parameter remains the initial choice of λh. Thus,

for each λh, the solution with given UV boundary conditions is unique. For a given choice

of UV asymptotics, the black-hole metric and temperature depends only on λh, which can

then be used as an unambiguous quantity to parametrize the different solutions.

F.3 Asymptotic form of the solution

Here we determine the behavior of the solution of the finite-T generalization of the super-

potential equations, (F.9), in the small λ and large-λ region, respectively.

The nontrivial part of eqs. (F.7)–(F.9) is the one that determines W and g; then, A

and Φ follow as in the zero-temperature case. We can decouple the W − g system from

the rest, as follows: First using (F.7), we rewrite eqs. (F.8) and (F.9) keeping Φ as the

independent variable. In this way, the four equations (F.7)–(F.9) split in two independent

sets of equations. For the scale factor we have (as for zero-temperature)

∂ΦA = −4

9

W

∂ΦW
; (F.15)

for W (Φ) and g(Φ) we find:

(

∂Φg +
∂2

Φg

∂Φg

)

∂ΦW + ∂2
ΦW =

16

9
W (F.16)

−4

3
W (∂ΦW )(∂Φg) − 4

3
(∂ΦW )2 +

64

27
W 2 = e−gV (λ) (F.17)

Eq. (F.16) can be integrated to a closed expression for g(Φ) in terms of W (Φ). Write

∂Φ [g + log(−∂Φg)] =
16
9 W − ∂2

ΦW

∂ΦW
≡ FW (Φ) (F.18)

Thus,

g + log(−∂Φg) =

∫

dΦ FW (Φ), (F.19)

and exponentiating:

(−∂Φg)eg = e
R

dΦ FW (Φ). (F.20)

Integrating one more time we obtain an explicit expression for g(Φ) in terms of the (still

unknown) function FW (Φ):

g(Φ) = log

∫

dΦe
R

dΦ′FW (Φ′). (F.21)

F.3.1 Solution of the W (Φ)-g(Φ) system in the λ → 0 limit

As usual, we assume a power series expansion of V (λ) as λ → 0. We take a power series

ansatz for W (λ) as well, as for its zero temperature counterpart,

W (λ) = W̃0 + W̃1λ + W̃2λ
2 + . . . (F.22)

where the expansion coefficients W̃i are a priori temperature dependent.
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Using this ansatz in eq. (F.21), written in terms of λ = eΦ, we can obtain the form of

g(λ) for small λ. We have from eq (F.18)

FW (λ) =
16W̃0

9W̃1

1

λ
+

1

9

(

7 − 32
W̃0W̃2

W̃1
2

)

+ O(λ), λ → 0. (F.23)

Using this expression in eq. (F.21) we obtain:

g(λ) = log

{

g1 + g2λ
γe

− 16W̃0
9W̃1

1
λ [1 + O(λ)]

}

γ ≡ 16

9
− 32

W̃0W̃2

W̃1
2 (F.24)

where g1 and g2 are integration constants. To recover the UV boundary condition g(λ) → 0

as λ → 0, we must fix g1 = 1. g2 ultimately determines the temperature of the solution,

and is only required to be negative.

Next, we insert the asyptotics (F.24) in the equation (F.17), in order to determine the

coefficients. For small λ it reads:

−4

3
g2W (∂λW )λγ+2e

−16W̃0
9W̃1

1
λ [1 + O(λ)] − 4

3
λ2 (∂λW )2 +

64

27
W 2 (F.25)

= V (λ)

[

1 − g2λ
γe

−16W̃0
9W̃1

1
λ + . . .

]

To any finite order in powers of λ, this equation is the same as the zero-temperature

superpotential equation, (E.1). It follows that the power series expansion of W (λ) is not

affected by the temperature, and all the coefficients are the same as in the zero temperature

solution: W̃i = Wi. The difference between the finite-T and zero-T solutions are of order

λγe−4/(b0λ) ∼ r4, and imply a temperature dependent value for the gluon condensate, cfr.

appendix E.

Since the series coefficients of W (λ) completely determine the UV series in inverse

logarithms of r of the metric and dilaton, it follows that such series has the same form for

any temperature.

F.3.2 Solution of the W (Φ)-g(Φ) system in the asymptotic large Φ region

Next we want to solve the system of eqs (5.12)–(5.13), for in the asymptotic region of

large Φ. This is defined as the region beyond some Φ0 where the potential can be well

approximated by its leading asymptotic,28

V (Φ) ≃ e2QΦΦP Φ ≫ Φ0. (F.26)

We assume the horizon is situated in this region, i.e. we work in the limit Φh ≥ Φ > Φ0.

The IR asymptotics of the zero temperature superpotential Wo(Φ) giving rise to the well

behaved solutions with the repulsive singularity are of the form:

Wo ∼ ΦP/2 eQ Φ,Φ ≫ Φ0. (F.27)

28the actual value of Φ0 is immaterial, and will depend on the specific choice for the potential.
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Let us try the ansatz for the large Φ behavior of W :

W (Φ) ∼ eQ̃ΦΦP̃ /2, Φ ≫ Φ0. (F.28)

With this ansatz we can directly calculate the r.h.s. of eq. (F.18). To leading and first

subleading order we have:

FW (Φ) ≃ K +
R

Φ
+ O

(

1

Φ2

)

, K ≡
(

16

9Q̃
− Q̃

)

, R ≡ − P̃

2

(

1 +
16

9Q̃2

)

, (F.29)

and from eq. (F.20) we obtain:

g(Φ) = log

{

C2 − C1Φ
ReKΦ

[

1 + O

(

1

Φ

)]}

, (F.30)

where C1 and C2 are two integration constants. This solution is supposed to be valid in

the whole region Φ0 ≪ Φ ≤ Φh, and we can relate Φh to the integration constants by going

to the horizon, g → −∞:

C2 − C1(Φh)ReKΦh = 0 (F.31)

so we can write eq. (F.30) as:

g(Φ) = log C2

{

1 −
(

Φ

Φh

)R

eK(Φ−Φh)

[

1 + O

(

1

Φ

)]

}

. (F.32)

Finally, requiring g ≃ 0 for 1 ≪ Φ ≪ Φh, fixes C2 = 1.

The appropriate solution for f ≡ eg is therefore:

f (Φ) = 1 −
(

Φ

Φh

)R

e−K(Φh−Φ). (F.33)

which correctly interpolates between the desired behavior at Φ ≪ Φh and Φ = Φh. This

solution is valid in the whole region Φ ≫ Φ0 up to the horizon Φ = Φh.29

Now let us look at equation (5.13). Using (F.33), and neglecting O(1/Φ2) terms,

it becomes:











4

3

(

Q̃ + P̃ /2Φ
)

(

K +
R

Φ

)

(

Φ
Φh

)R
eK(Φ−Φh)

1 −
(

Φ
Φh

)R
eK(Φ−Φh)

− 4

3

(

Q̃2 +
P̃

2Φ

)2

+
64

27











e2Q̃ΦΦP̃

=
1

1 −
(

Φ
Φh

)R
eK(Φ−Φh)

{

−4

3

(

Q2 +
P

2Φ

)2

+
64

27

}

e2QΦΦP . (F.34)

For Φ ≪ Φh this requires:

Q̃ = Q, P̃ = P, (F.35)

29For Φ > Φh the solution is the same, but the definition of g changes: f = −e−g.
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i.e. the superpotential must have the same large Φ asymptotics as the zero-temperature

special solution. Then, eq. (F.34) is equivalent to the Φ-independent algebraic equations:

− 4

3
QK = −4

3
Q2 +

64

27
,

(

PK

2
+ RQ

)

= −QP (F.36)

which are identically satisfied, due to the definitions of K and R in (F.29)!

Therefore the asymptotic solution with horizon at Φ = Φh is , to this order:

W (Φ) ≃ Wo(Φ) ≃ eQΦΦP/2 (F.37)

f(Φ) ≃ 1 −
(

Φ

Φh

)R

exp[−K(Φh − Φ)], (F.38)

valid in the whole asymptotic region Φh > Φ ≫ Φ0.

In the particular case of power-law behavior, Ao(r) ∼ −Crα, corresponding to Q = 2/3,

P = (α − 1)/α (see [28]), the solution in r-coordinates is, for large r:

A(r) ∼ −Crα, (F.39)

Φ(r) ≃ 3

2
Crα +

3

4
(α − 1) log r, (F.40)

f ∼ Φ− 5
2
P e2Φ ∼ r−

5
2
(α−1)e3Crα+ 3

2
(α−1) log r ∼ r1−αe3Crα

(F.41)

The horizon position is obtained by inverting Φ(rh) = Φh.

We can verify directly that these asymptotics solve eqs. (3.5)–(3.6), for V ∼ e
4
3
Φ. Using

the asymptotic form b(r) = b0e
−Crα

, we get, integrating eq (3.7)

f(r) ∼ C2 + C1

∫ r

dt b−3(t) = C2 +
C1

αC

∫ 3Crα

ds s
1
α

(1−α)es

≃ C2 +
C1

3αC
r1−αe3Crα

(F.42)

Substituting into the equation for the potential yields

V (r) =
3

b2

{

f

[

2
ḃ2

b2
+

b̈

b

]

+ ḟ
ḃ

b

}

≃ 3

b2

{(

C2 +
C1

3αC
r1−αe3Crα

)

(

3α2C4r2(α−1)
)

+ C1e
3Crα (−αCrα−1

)

}

≃ 9α2C2

b0n2
C2r

2(α−1)e2rα ∼ Φ
α−1

α e
4
3
Φ. (F.43)

This is the expected leading behavior for the potential. The contributions proportional

to C1e
5Crα ≃ C1e

10
3

Φ cancel between the two terms containing f and ḟ respectively. V is

independent of C1, which encodes the horizon position. Furthermore, comparing eq. (F.43)

with the expression for V (r) one obtains with f ≡ 1, we see that C2 must be set to C2 = 1

if the potential has to be the same as in the zero-temperature solution, in agreement with

eq. (5.19).
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B

B

S

S

I II

Figure 16. Two possible types of cusps at which the small and big BH in pair can merge. These

are denoted by ”S” and ”B” , respectively. The full curve F (T ) should be constructed by various

combinations of these vertices.

G Multiple big black-holes

In this section we generalize the proposition of section 5.3 to a much larger class of ge-

ometries, for which the functions F (λh) and T (λh) may acquire multiple extrema,30 see

figures 18 and 19 for an example. In these cases there are more than just two BHs. How-

ever for the generic confining theories,31 they still come in pairs of one small (T ′(λh) > 0)

and one big (T ′(λh) < 0) BH, connected at an extremum of T (λh). Therefore there is

an even number of BHs in total. This follows from the fact that there always exists an

asymptotically AdS big BH for λh → 0 and a small BH for λh → ∞ and one extremum of

T (λh) creates two branches (a small and a big), by definition.

In particular we want to prove the following:

1. Existence of a deconfinement phase transition,

2. Finite latent heat (first order transition),

3. Continuity of F as a function of T ,

4. Uniqueness of the deconfinement transition.

We shall first present a graphical proof of these points. For illustration purposes we

make the following additional assumption (that seems natural and satisfied by a large

class of potentials): Cv = TdS/dT is negative (positive) for small (big) BHs.32 After the

graphical demonstration below, we provide an analytic proof which applies to cases when

this additional assumption is weakened. The assumption about the specific heat is actually

not needed for point 1 in the above list, so that the main result (the existence of a phase

transition) is valid for an arbitrary behavior of the specific heat. The function F (T ) is

determined from F (λh) and λh(T ). Since the latter is generally multi-valued, so is F (T ).

As a multivalued function it can have a very complicated form with cusps and crossings,

see figure 17 for an example. Although complicated, the form of F (T ) is restricted by

certain rules:
30We assume that these functions are C∞ in λh.
31except the borderline case of α = 1.
32as in the case of the AdS5 BH with spherical horizon.
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T
1
minTmin

Tmax

Fmin
2

1
Fmin

Fmax

B1 

1S

1S

B2

B1 

S2

S2

B2

F

T

Tc Tb Ts2

Fb

1 

Tf

Figure 17. Example of a curve F (T ) that exhibits multiple extrema. S1 and S2 denote small BHs

whereas B1 and B2 denote big BHs. The arrows represent direction of increasing λh.

1. On every piece of the F (T ) curve, F ′(T ) < 0. This follows from the positivity of

entropy.

2. On the small black-hole branches F ′′(T ) > 0, and on the big black-hole branches

F ′′(T ) < 0. This follows from our assumption above and from F ′′ ∝ −Cv.

3. There should always be a big black-hole branch (which asymptotically becomes the

AdS black-hole at high-T ) in the high-T (small λh) region, on which F (T ) → −∞ as

T → ∞.

4. There should always be a small black-hole branch in the high-T (large λh ) region,

on which F (T ) → 0. This follows from the discussion in section 5.2.

5. The small and the big BHs always come in pairs, hence there are equal numbers of

branches on the F (T ) curve, with negative and positive F ′′(T ). This is clear from

the fact that one small and one big black-hole branches off at an extremum of T (λh).

6. These merging points of a pair of big and small BHs are represented by a cusp. There

are two possible types of cusps as shown in figure 16. These particular shapes follow

from the first two properties above. Since at the merging points the entropy is the

same, F ′ is the same on the two branches of the cusp.

For an example of a curve F (T ) with these properties, see figure 17. Given these

properties, it is not hard to show that the minimum energy configuration for T > Tc
33

33There may be more than one Tc on which F vanishes and our statement applies to all of these points.
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λ h

Ts

Tb

Tc

Tmin
1

Tmin
2

minλ1 λs λmax λb
2 λmin

2λc

Tmax

λb
1

fT

λ f

S1

S1
S2B1

B2

T

Figure 18. T as a function of λh in the example of figure 17.

Fmin
2

minλ1

λmax

λmin
2 λ h

Fb

λb
2λb

1

B1

S1

B2

S2

λ f λs
λc

Fmin
1

Fmax

F

Figure 19. F as a function of λh in the example of figure 17.

is always a big BH. This is because, the entire curve F (T ) should be formed out of the

vertices given in figure 16 connected with small and big BH legs. Clearly for any small BH,

there exist a big BH that stems from the same vertex which has lower energy. Therefore,

in the entire curve for F < 0, the lowest energy configuration should be a big black-hole.

Of course, below T = Tc the lowest energy configuration becomes the thermal gas and

the curve Fmin(T ) for the minimum energy configuration always looks like in figure 7. For

the example given in fig 17, the corresponding free energy diagram is constructed in 8.

The reason that F (T ) should cross zero (point 1 in the list above), hence exhibit a phase
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transition, follows from the 2nd and the 3rd properties above. Similarly, the points 2,

3 and 4 simply follow from the fact that one cannot draw a function F (T ) that violates

these points with the properties listed above. Thus, we demonstrated what we wanted: the

proposition of section 5.3 apply to the multiple extrema cases as well.

Before going into the analytic proof of these statements, let us analyze the example

of figure 17 in more detail. In this particular case, there are two small and big BH pairs

that are denoted by (S1, B1) and (S2, B2). The black-holes in each pair merge at two local

minima of T (λh) (that are denoted by T 1
min and T 2

min)) and the two pairs are connected at a

local maxima of T (λh) (denoted by Tmax). See figure 18 which plots T (λh), that corresponds

to figure 17 for a clear demonstration of these facts. We also present the function F (λh)

that corresponds to this example in figure 19. Given figure 18 and figure 19, figure 17

follows by solving for F as a function of T parametrically. The arrows in figure 17 point

to the direction of increasing λh.

Figure 17 exhibits various first order transitions between different branches. First of

all there are transitions between thermal gas (with F (T ) = 0) and B1, B2 and S1. We

denote these points as Tf , Tc and Ts respectively in figure 17. However, not all of these

points correspond to actual phase transitions. In order to obtain the true free energy of

the system, one should draw F (T ) on the minimum energy configuration. This looks is

much simpler and the one corresponding to figure 17 is given by figure 8. In particular,

we see that out of Tf , Tc and Ts, only Tc is a real phase transition. It is in fact the

confinement-deconfinement phase transition in this example. Tf corresponds to a “fake”

deconfinement transition, because B1 has higher energy than B2 at the point it crosses

F = 0. Similarly, at Ts, there is a fake transition between a small BH and the thermal gas

geometry. Although these are fake transitions, hence uninteresting for the dual field theory

point of view, they may bear some interest on the bulk as they describe possible transitions

between various different geometries in asymptotically AdS spaces. The fake transitions

described here parallels the transitions found in R4 and F 4 corrected AdS geometry in [51].

In addition, there are various transitions among small and big BHs (S2 and B1 in the figure)

and different small black-holes (S1 and S2 in the figure).

However there is another interesting possibility that is also present in this example:

a first order transition between two different big black-holes at Tb. This transition is not

“fake” as others, because it corresponds to first order transition between two minimum

energy configurations, B1 and B2 in fig 17. See also figure 8. It will be interesting to

investigate whether or not a dilaton potential V (λ) with this property exists; if so, whether

or not this corresponds to a meaningful phase transition in the dual gauge theory.

G.1 Analytic demonstration

Suppose the function T (λh) has an arbitrary number n of minima, with n (even) odd for

(non-)confining IR asymptotics,34 corresponding to certain values λi, i = 1 . . . n. Then,

there will be n + 1 black-hole branches, each corresponding to the ranges (λi, λi+1), with

λ0 ≡ 0 and λn+1 ≡ +∞. In each branch the free energy as a function of T is single valued,

34except in the borderline confining case where there is also an even number of minima
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and is given by the first law, Fi(T ) = −
∫

Si(T
′)dT ′ + Ci where Si is the entropy function

in the ith branch (i.e. in the interval (λi−1, λi)), and Ci are integration constants. We can

still write the free energy in compact form as

F(λh) =

∫ +∞

λh

dλ′ S(λ′)
dT

dλ′ , (G.1)

as this is the unique continuous function that satisfies dF/dT = −S on every branch,

and vanishes as λh → ∞. Since S is nowhere vanishing for finite λ, a minimum for T (λ)

corresponds to a maximum for F(λ). Using the integral expression of the free energy, we

can give an analytic proof of the proposition in section 5.3 relating confinement with the

existence of phase transitions.

Let us consider confining asymptotics. We want to show that these always exhibit a

first order phase transition. In particular we want to prove the following three statements:

1. F changes sign at some finite λ. Specifically, F → −∞ as λ → 0, whereas F(λn) > 0;

2. For every λi corresponding to a minimum of T (λ) , either F(λi) is positive or it is

larger than the free energy of some big black-hole with the same temperature;

3. For every λi corresponding to a maximum of T (λ), F(λi) there exists a big black-hole

with the same temperature and lower free energy.

Step 1 by itself shows that there is indeed a phase transition. It goes in the right direction,

since at small temperature (T < Tmin) there are no black-hole solutions, and moreover in

any black-hole branch the free energy is a decreasing function of temperature. Therefore

the black-hole free energy crosses from positive to negative (with respect to the vacuum)

as the temperature increases.

Steps 2 and 3 imply that the free energy never jumps in either directions: the branching

points when a large/small black-hole pair appears or disappears have always higher free

energy than some other state in the ensemble (which therefore must have been dominant

starting from some lower temperature). If this weren’t true, it would be possible to have

discontinuous jumps in the free energy, i.e. phase transitions with infinite latent heat. In

this step, one needs an extra assumption about the ordering of the black-hole branches.

Step 3 also implies that ones the system is in the black-hole phase for some temperature,

it stays in a black-hole phase for all higher temperatures, so there cannot be any inverse

“reconfining” transition.

The proof of Step 1 is straightforward, and identical to the argument we used in section

5.3 in the case of n = 1, i.e. when T (λh) has a single minimum. Thus, the existence of

a deconfining phase transition per se is easy to prove. To prove Steps 2 and 3 however,

in the general case n > 1 we need to make an extra assumption about the nature of the

entropy S(λ):

Assumption: the black-hole branches are “ordered” in the sense that Si(λ) > Si+1(λ
′)

for any λ ∈ (λi−1, λi) and any λ′ ∈ (λi, λi+1).
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This still allows some local violation of the monotonicity of S(λ) within each branch.

Although we cannot exclude violation of this assumption from first principles, it is satisfied

in all examples we have studied numerically, where we also found cases with strict mono-

tonicity of S(λ) violated (these cases correspond to regions of stable small black-holes, as

discussed in section 5.2.2). The above assumption might be relaxed, since it is probably

not a necessary condition for the statements 2 and 3 to hold, but it allows the construction

of a simple enough proof.

With the above assumption, the proof of the proposition goes as follows.

Step 1. The fact that F < 0 for small enough λ follows from eq. (5.6), whose validity

does not depend on the number of extrema of T (λh); on the other hand, evaluating the

free energy on the extremum (a minimum) of T (λh) with larger λh, we obtain:

F(λn) =

∫ +∞

λn

S
dT

dλ′ > 0, (G.2)

since in the last branch dT/dλ > 0. This is true without additional assumptions about the

function S(λ).

Step 2. First, consider the extremum λi corresponding to the absolute minimum of T (λh),

T (λi) = Tmin. Since the last extremum λn is also a minimum, there will be 2k = n − i

minima and 2k − 1 maxima in the region λ > λi, corresponding to 2k maxima and 2k − 1

minima for F(λ). We are going to show that F(λi) − F(λn) > 0. Let us evaluate the

black-hole free energy at the point λi:

F(λi) =

∫ +∞

λi

S(λ′)
dT

dλ′

=

∫ λi+1

λi

S(λ′)
dT

dλ′ +

∫ λi+2

λi+1

S(λ′)
dT

dλ′ + . . .

∫ λn

λn−1

S(λ′)
dT

dλ′ + F(λn). (G.3)

Each integral is extended over a different black-hole branch. In every branch, we can use

the mean value theorem:

∫ λj+1

λj

S(λ′)
dT

dλ′ = Sj+1(Tj+1 − Tj), (G.4)

where Sj+1 ≡ S(λ̄j+1), for some appropriate value λ̄j+1 with λj < λ̄j+1 < λj+1.

Then, (G.3) becomes:

F(λi) −F(λn) = Si+1(Ti+1 − Ti) + Si+2(Ti+2 − Ti+1) + . . . Sn(Tn − Tn−1). (G.5)

The sum has alternating sign since, for any l > 0, Ti+2l are local minima and Ti+2l+1 are

local maxima. By assumption, Si+1 > Si+2 > . . . Sn, therefore:

F(λi) −F(λn) > Si+1(Ti+1 − Ti) + Si+1(Ti+2 − Ti+1) + . . . Sn−1(Tn − Tn−1)

= Si+1(Ti+2 − Ti) + Si+3(Ti+4 − Ti+2) + . . . Sn−1(Tn − Tn−1) (G.6)
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Notice that now only temperature corresponding to local minima appear. Next, subtract

the combination Sn−1(Tn − Ti) from both sides of the above inequality:

F(λi) − F(λn) − Sn−1(Tn − Ti) > Si+1(Ti+2 − Ti) + Si+3(Ti+4 − Ti+2) + . . .

. . . + Sn−3(Tn−2 − Tn−4) + Sn−1(Tn − Tn−2) − Sn−1(Tn − Ti)

= Si+1(Ti+2−Ti) + Si+3(Ti+4−Ti+2) + . . . + Sn−3(Tn−2 − Tn−4) + Sn−1(Ti − Tn−2)

> Si+1(Ti+2−Ti) + Si+3(Ti+4−Ti+2) + . . . + Sn−3(Tn−2 − Tn−4) + Sn−3(Ti − Tn−2)

= Si+1(Ti+2 − Ti) + Si+3(Ti+4 − Ti+2) + . . . + Sn−3(Ti − Tn−4)

> . . . > Si+1(Ti+2 − Ti) + Si+3(Ti − Ti+2) = (Si+1 − Si+3)(Ti+2 − Ti) > 0 (G.7)

In each subsequent step we have used Sl+1 > Sl+3 and (Tl+2 − Ti) < 0 since we took Ti to

be the absolute minimum. Therefore, from the first and last side of (G.7) we get:

F(λi) > F(λn) + Sn−1(Tn − Ti) > 0 (G.8)

This shows that at the minimum temperature when a black-hole pair appears, the free

energy is positive, and the thermal gas background still dominates the ensemble, so the

global free energy of the system does not jump abruptly.

To show that the free energy does not exhibits jump at the creation of subsequent

black-hole pairs occurring at T > Tmin, we proceed as follows. Consider the case when λi is

a generic local minimum. If all the subsequent minima λi+2 . . . λn have higher temperature,

then we can proceed exactly as above and show that F (λi) > 0; Otherwise, if there is a

local minimum for some λi+2l > λi, with Ti+2l < Ti, then there is also a big black-hole

with temperature TB = Ti, corresponding to a point λB ∈ (λi+2l−1, λi+2l). It is easy to

show that F(λi) > F(λB), using the same procedure that led to (G.7):

F(λi) −F(λB) =

∫ λB

λi

dλ′ S(λ′)T ′(λ′)

= Si+1(Ti+1 − Ti) + Si+2(Ti+2 − Ti+1) + . . . SB(TB − Ti+2l−1)

> Si+1(Ti+2 − Ti) + Si+3(Ti+4 − Ti+2) + . . . SB(TB − Ti+2l−1)

> SB(TB − Ti) = 0 (G.9)

Therefore, the black-hole pair that appears at Ti cannot dominate the ensemble right at

Ti, and the global free energy of the system does not jump.

Step 3. Finally, we show that there cannot be an increase of the free energy back above

zero, for temperatures higher than the critical temperature. Since in each branch the free

energy of single black-holes is monotonically decreasing, the only way the global free energy

can increase is by jumping up at a point where a small/big black-hole pair disappears, i.e.

at a local maximum of T (λh) (i.e. a local minimum of F(λh) ). Therefore, it is sufficient

to show that for any maximum λi of T (λh), with temperature Ti, there exist a black hole

with the same temperature TB = Ti but lower free energy, so that the system does is not

forced to jump at T = Ti. Since T (λ → 0) = +∞, there certainly exists at least one big

black-hole with TB = Ti and λB < λi. Let us consider the closest one to λi. λi will be
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separated from λB by an odd number of extrema (l minima and l−1 maxima). Proceeding

along similar lines as in Step 2, we now compute the difference F(λB)−F(λi) and show it

is negative:

F(λB) −F(λi) =

∫ λi

λB

dλ′ S(λ′)T ′(λ′) (G.10)

= Si−2k−1(Ti−2k−1 − TB) + Si−2k(Ti−2k − Ti−2k−1) + . . . + Si(Ti − Ti−1)

< Si−2k−1(Ti−2k − TB) + Si−2k+1(Ti−2k+2 − Ti−2k) . . . + Si−1(Ti − Ti−2)

= Si−2k−1(Ti−2k − Ti) + Si−2k+1(Ti−2k+2 − Ti−2k) . . . + Si−1(Ti − Ti−2)

In the last line, we replaced TB with Ti in the first term. Now only temperatures of

local maxima appear, of which Ti is the highest one. Using repeatedly the inequalities

Si−2k−1 > Si−2k+1 > . . . Si−1 we have:

F(λB) −F(λi) < Si−2k−1(Ti−2k−Ti) + Si−2k+1(Ti−2k+2−Ti−2k) + . . . + Si−1(Ti − Ti−2)

< Si−2k−+1(Ti−2k−Ti) + Si−2k+1(Ti−2k+2−Ti−2k) + . . . + Si−1(Ti − Ti−2)

= Si−2k+1(Ti−2k+2 − Ti) + . . . + Si−1(Ti − Ti−2)

< . . . < Si−1(Ti−2 − Ti) + Si−1(Ti − Ti−2) = 0 (G.11)

Thus, when a black-hole pair disappears at temperature Ti, the system is already on another

big black-hole branch with lower free energy.

So far we have treated the case of confining asymptotics. The converse can also be

proven under the same assumptions: non-confining asymptotics do not exhibit a thermal

gas/black-hole phase transition,35 rather the system is in a (big) black-hole phase for any

T > 0. The proof proceeds along the same lines as in the confining case.

H Details of the computations with scalar variables

H.1 Equivalence to Einstein’s equations

Here we prove that the reduced system of equations presented in the section 7 are equivalent

to the equations of motion in the u-variable in (A.17)–(A.20). For this purpose we should

supplement (7.2) and (7.3) by the equations that determine the metric functions. These

are given by the following first order equations:

A′ = −1

ℓ
e−

4
3

R Φ
−∞

X , (H.1)

Φ′ = −3X

ℓ
e−

4
3

R Φ
−∞

X , (H.2)

g′ = −4Y

ℓ
e−

4
3

R Φ
−∞

X . (H.3)

Using d/du = Φ′(d/dΦ), (7.2), (7.3) and the three equations above in (A.17)–(A.20), it is

straightforward to show that they are all solved.

35One cannot talk about a deconfining transition here, since the zero-temperature solution itself is not

confining
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To convert the system (7.2), (7.3), (H.1)–(H.3) to the conformal coordinate system,

one uses,
du

dr
= eA. (H.4)

Now, we use this equation to show how r and λ related near the boundary. Converting (H.2)

into the r-variable by (H.4), changing variable to λ = exp(Φ) and using the equation (7.4),

one has:
dλ

dr
= −3X

ℓ
λe

A0+
R λ
λ0

(3Xλ)−1− 4
3

R λ
0

X
λ . (H.5)

We use the expansion of X near the boundary in (2.11) to get,

d(b0λ)

dr
=

1

ℓ
(b0λ)2e

A0− 1
b0λ0 (b0λ0)

−be
1

b0λ (b0λ)b (1 + O(λ)) . (H.6)

Now, we use the definition of the QCD scale Λ in (2.18) and integrate (H.6) to obtain:

r Λ = e
− 1

λb0 (b0λ)−b. (H.7)

The corresponding relation involving the domain wall coordinates is obtained by integrating

eq. (H.2). The result in terms of λ(u) reads:

1

b0λ
+

(

4

9
+ b

)

log(b0λ) = −u

ℓ
− log Λℓ (H.8)

H.2 Solution of eq. (7.3)

Here, we note that (7.3) can be solved in terms of X explicitly. Define,

c(Φ) =
4(X2 − 1)

3X
, d(Φ) = − 4

3X
. (H.9)

Then, the solution is,

Y (Φ) = e
R Φ c(Φ′)dΦ′

(

C1 −
∫ Φ

dΦ′d(Φ′)e
R Φ′

c(Φ̃)dΦ̃

)−1

. (H.10)

This is the general solution of (7.3) for non-zero Y . As already mentioned, Y = 0 is also a

consistent solution, which corresponds to the thermal gas.

H.3 A fixed point analysis of the X-Y system

In order to understand the number of integration constants in the system, one can perform

a fixed point analysis of the XY system given by eqs. (7.3) and (7.2).

It is obvious that Y = 0 is a fixed line in the phase space. This line corresponds

to the zero temperature solutions discussed in [28]. We focus on this case first. The

solution is determined by (7.2) at Y = 0. Clearly, there are four fixed points of the system

for an arbitrary potential. These are given by X = ±1 and ±∞. For the special class

of exponential potentials V ∼ exp(αΦ), there is the additional fixed point X = −3α/8.

Furthermore, X = 0 is also a fixed point for the types of potentials we study in this paper.

We solve the system by specifying the boundary conditions (or the asymptotic behav-

ior) in the IR, for large λ. Suppose X = Xf at λ = λf . Let us assume for the moment that

Xf < 0 (as is the case for the “special” and “generic” solutions discussed in this paper).

Then, one obtains the following:
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1. If −1 < Xf < 0, then X → 0 as λ decreases, at λ = 0.

2. If −∞ < X < −1 then X → −∞ as λ decreases at λ = λi 6= 0.

To prove the above statements, let us first show that X = −1 is a repulsive fixed point

in the direction of decreasing λ. To show this, we substitute X = −1 + ǫ, 1 ≫ ǫ > 0

in (7.2). One has,
dǫ

dΦ
= ǫ(−8

3
+

d log(V )

dΦ
), (H.11)

with the solution,

ǫ = c V (Φ)e−8Φ/3. (H.12)

As Φ → ∞ V → e4Φ/3 in our case. Hence one falls into X = −1 as Φ → ∞. Note that the

fixed point would instead be attractive for decreasing λ, were V → eaΦ/3 with a > 8/3. The

analysis is the same for X = −1− ǫ, 1 ≫ ǫ > 0, as one obtains the same equation, (H.11).

Now let us focus on the vicinity of X = 0, by writing X = −ǫ, 1 ≫ ǫ > 0. One obtains

dǫ

dΦ
=

4

3
− 1

2ǫ

d log(V )

dΦ
. (H.13)

Let us assume that one can reach X = 0 at finite Φ = Φf . Then, one can ignore the first

term in the r.h.s. of (H.13) above and obtain the follwing solution:

ǫ2 = − log(V (Φ)/V (Φf )) (H.14)

as Φ → Φf . This shows that X = 0 can never be reached in the decreasing λ direction, in

finite λ-time. Instead X always runs into X = 0, in the direction of decreasing λ.

On the other, hand (H.14) allows to pass the X = 0 point in the direction of increasing

λ, in finite λ-time. These solutions (as functions of r) continue to the positive X region

and hit back to the X = 1 fixed point as r increases, see figure 20. However, in these

solutions the derivative of λ(r) changes sign at the locus X = 0. As our purpose is to find

solutions dual to field theories with negative definite β-functions, these do not correspond

to any reasonable theories.

One can easily carry out a similar analysis in the vicinity of X = −∞. For this purpose,

we define Z = 1/X, and focus on the vicinity of Z → 0− by defining Z = −ǫ > 0. To

leading order,
dǫ

dΦ
=

4

3
− ǫ

2

d log(V )

dΦ
, (H.15)

with the solution,

ǫ =
4

3
V [Φ]−

1
2

∫ Φf

Φi

V
1
2 [Φ′]dΦ′ (H.16)

where Φi finite, is an integration constant. It is clear that, ǫ goes to 0 only at a finite

point Φi.

This completes the proof of the assertions above. A similar analysis can be carried out

in the region of X > 0. We summarize the behavior of flows in the direction of decreasing

λ in figure 21.

The class of solutions to the X equation of motion for Y = 0, are summarized in

figure 20. There are five classes:
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1 2 3 4 5 6 7
Λ

-2

-1

0

1

2
X

Figure 20. All solutions to the X equation of motion are shown. The thick (red) curve corresponds

to our solution X0, that flows to the fixed point X = −1/2. One clearly observes the fixed points

X = ±1,±∞ and 1/2 in the figure. The direction of flow (as a function of r) is towards the left for

X > 0 and towards the right for X < 0.

X = −1 X = 0 X = 

Figure 21. Flow chart of the solutions for Y = 0 case. The arrows show the direction of decreas-

ing λ.

• First of all there is our main solution, X0 that flows to −1/2 as l increases. We recall

that the fixed point X = −1/2 exists only for the potentials that has an asymptotic

form V → exp(4Φ/3). This is shown as the thick (red) curve in 20.

• Secondly, there are the solutions −1 < X < X0 that flow to −1. These are also

asymptotically AdS in the UV but have differ in the IR from X0. The solutions

described in [43] is an example of this class.

• The solutions X0 < X < +1. They also have an AdS fixed point in the UV. As

a function of r the solutions continue in the region of positive X, hence positive β-

function. This is not acceptable for an RG-flow in a field theory. The reason that such

a behavior can happen in a gravity dual is because λ(r) is determined by solving a

second order differential equation whereas in the field theory it solves the first-order

Gell-Mann-Low equation. Therefore we discard these solutions as un-physical for

holographic purposes.

• Finally there are the solutions −∞ < X < −1 and ∞ > X > 1 that posses negative

and positive β-functions respectively. They do not exhibit an asymptotically AdS

fixed point, hence are not useful for our purposes here.
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Y = X − 1
2

Y

X

Figure 22. Flow chart of the solutions for the general case for non-zero Y . The arrows show the

direction of decreasing λ.

Now, it turns out that the above behavior of solutions easily generalize the case of

Y 6= 0. For simplicity, we focus only the region of the phase space that we are interested

in, i.e. X < 0, Y > 0 and Y > X2 − 1. In this case, the fixed point X = −1 is replaced by

the fixed line X = −
√

1 + Y . The flow chart in the phase space is shown in figure 22. The

thick (red) curve represents the fixed line of the system 1 − X2 + Y = 0. As described in

section 7.3, Y diverges at the horizon that corresponds to a X = Xh = −3/8V ′(λh)/V (λh).

Therefore each different curve corresponds to a different temperature.

It may be interesting to carry out an analysis as a function of r and obtain a flow chart

that generalizes figure 20 to the case of the full X-Y system. This would determine the

entire family of solutions to (7.2, 7.3), most of which would be un-physical. We leave this

question to future work.

H.4 Near-horizon continuously connects near-boundary

We want to show that the BH solution that is given by the initial conditions for X and Y

at the horizon i.e. (7.21), (7.22) continuously extends over the solution near the boundary,

i.e. Y ≈ 0, X ≈ X0. As shown by eqs. (7.8) and (7.9), the solution of the system becomes

Y ≈ 0, X ≈ X0 as Φ → −∞, independently of the initial conditions at the horizon. We

shall prove that this asymptotic UV solution is continuously connected to the solution near

the horizon. This is achieved by examining the equations is motion (7.2) and (7.3).

First, we see from (7.3) that X = X0, Y = 0 cannot be reached at a finite point
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Φ = Φf with −∞ < Φf < Φh: Suppose Y = ǫ near Φf . Then, one obtains

dǫ

dΦ
= −4(1 − X2)

3X
ǫ

with the solution

ǫ = C e
−

4(1−X2
f )

3Xf
Φ
,

where Xf = X(Φf ). Thus, ǫ = 0 can only be reached as Φ → −∞ (recall that X < 0) in

contradiction with our assumption. Therefore we learn that Y and X should be finite at

an arbitrary mid-point Φf .

The only way the near UV (Φ < Φf ) and the near horizon (Φ > Φf ) solutions are

detached would be a divergence in the r.h.s. of (7.2) and/or (7.3) at Φ = Φf as Φ decreases

down from Φh. In this region, V is bounded, X is also bounded as −1 < X < 1. From the

exact solution for Y in (H.10) one finds that Y is also bounded. Hence the only way one

can get a divergence is as X → 0 at Φ∗. Now, we write X = −ǫ in (7.2) and find that ǫ

satisfies,

−dǫ2

dΦ
= ǫ0

d

dΦ
log(V (Φ)),

where ǫ0 = 1 + Y (Φf ) > 0. The solution is,

ǫ2 = −ǫ0 log

(

V (Φ)

V (Φf )

)

which cannot be satisfied for any Φ > Φf , because we assumed V (Φ) monotonically in-

creasing. Thus we proved that, given the initial conditions for X and Y at the horizon, the

solution flows down to Φ = −∞ and connects continuously to the UV region where Y → 0

and X → X0.

Note however that X = 0 can be reached at a finite Φf for Φ approaching Φf from

below. This is analogous to the “bouncing” solution studied in the previous appendix. At

finite temperature, this possibility is automatically ruled out by imposing the regularity

condition at the horizon.

H.5 Near boundary behavior of δX and Y

In order to derive the asymptotic behavior of δX and Y , it proves useful to obtain differen-

tial equations satisfied by these perturbations. This is done by expanding (7.2) and (7.3)

to first order in the perturbations and making use of (7.6). One obtains:

λ
dY

dλ
= −4

3

1 − X2
0

X0
Y, (H.17)

λ
dδX

dλ
= δX

[

4

3X0
(X2

0 − 1) +
X2

0 + 1

X2
0 − 1

λ

X0

dX0

dλ

]

+
λ

1 − X2
0

dX0

dλ
Y. (H.18)
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The solution is straightforward:

Y (λ) = Y (λ0) e
− 4

3

R λ
λ0

dλ̄
λ̄

1−X2
0

X0 , (H.19)

δX(λ) = e
− 4

3

R λ
λ0

dλ̄
λ̄

1−X2
0

X0

[(

Y (λ0)

2
− C0(λ0)

)

1

X0
+ C0(λ0)X0

]

, (H.20)

Y (λ0) = Y0 e
− 4

b0λ0 (b0λ0)
−4b, C0(λ0) = C0 e

− 4
b0λ0 (b0λ0)

−4b. (H.21)

Here Y0 and C0 are integration constants. By expanding the above equations one ob-

tains (7.17).

H.6 Free energy in λ: details

We will compute the free energy in the λ-coordinate frame. In this frame, the metric of

the thermal gas and the black-hole are as follows:

ds2
TG = B2

0(λ)

(

dt2 + d~x2 +
dλ2

D0(λ)2

)

, (H.22)

ds2
BH = B2(λ)

(

dt2F (λ) + d~x2 +
dλ2

F (λ)D(λ)2

)

. (H.23)

Here the various metric functions are defined as follows:

B0(λ) = B0(λ0)e
1
3

R λ
λ0

dλ̃
λ̃

1
X0 , D0(λ) = −3

ℓ

X0(λ)

λ
B0(λ)e−

4
3

R λ
0

dλ̃
λ̃

X0 , (H.24)

B(λ) = B(λ0)e
1
3

R λ
λ0

dλ̃
λ̃

1
X , D(λ) = −3

ℓ

X(λ)

λ
B(λ)e−

4
3

R λ
0

dλ̃
λ̃

X , (H.25)

F (λ) = e
4
3

R λ
0

dλ̃
λ̃

Y
X . (H.26)

They are obtained directly from the the expressions for the metric functions defined in

the text in terms of the radial variable r, viz. (7.4), (7.5) and (H.2). We call the metric

functions in λ with the capital letters to distinguish them from the analogous functions of

r. The relations are explicitly given by the following formulae:

B0(λ) = b0 (r0(λ)) , B(λ) = b (r(λ)) , F (λ) = f (r(λ)) , (H.27)

where r and r0 are determined by,

r0(λ) =

∫ λ

0

dλ̃

λ̃D0(λ̃)
, r(λ) =

∫ λ

0

dλ̃

λ̃D(λ̃)
. (H.28)

The expressions above completely determine the map between the r-frame and the λ-frame.

H.6.1 Einstein contribution

We first compute the Einstein contribution to the free energy. This is generally given by

the frame-independent expression,

SE =
2

3
M3

∫

M

√
gV. (H.29)
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M is the manifold with a boundary. We regulate the integral in the λ-frame by placing

a cut-off at λ0. Thus, using the metric functions defined above, one obtains the following

expression in the lambda variable, for the thermal gas solution,

STG
E =

2

3
M3β′V ′

3

∫ ∞

λ0

B0(λ)5V (λ)D0(λ)−1. (H.30)

Here β′ and V ′
3 are the circumference of the Euclidean time and the volume of the space-

part. They are related to the analogous quantities in the black-hole geometry, by matching

the two solutions on the cut-off:

β′B0(λ0) = βB(λ0)
√

F (λ0), V ′
3B0(λ0)

3 = V3B(λ0)
3. (H.31)

Now, we use the expression for the potential [28],

V (λ) =
12

ℓ2
(1 − X2

0 )e
R λ
0 X0(λ̃)dλ̃

λ̃ , (H.32)

in (H.30) and see that it can be rewritten in the following form:

STG
E = − 8

3ℓ
Mβ′V ′

3B0(λ0)
4e−

4
3

R λ0
0 X0

dλ̃
λ̃

∫ ∞

λ0

dλ

λ

1 − X2
0

X0
e

4
3

R λ
λ0

dλ̃
λ̃

1−X2
0

X0 . (H.33)

To obtain this expression, we used (H.25), (H.24) and (H.32). We see that the integrand

is a total derivative, hence the integral can be carried out exactly. One has,

STG
E = −2

ℓ
M3β′V ′

3B0(λ0)
4e−

4
3

R λ0
0 X0

dλ̃
λ̃ e

4
3

R λ
λ0

dλ̃
λ̃

1−X2
0

X0

∣

∣

∣

∣

∞

λ0

. (H.34)

It is easy to see that the contribution from ∞ vanishes, as the expression above scales a

λ−2 for large λ for our confining IR asymptotics. Thus one only has the contribution at λ0:

STG
E =

2

ℓ
M3β′V ′

3B0(λ0)
4e−

4
3

R λ0
0 X0

dλ̃
λ̃ . (H.35)

This is our final expression for the Einstein term on the TG geometry.

Let us now compute the analogous contribution on the BH geometry. From (H.29)

we get,

SBH
E =

2

3
M3βV3

∫ λh

λ0

B(λ)5V (λ)D(λ)−1. (H.36)

Following the same steps as before, we substitute the expression for D(λ), B(λ) and V (λ)

from (H.25), (H.24) and (7.6), and obtain,

SBH
E = − 8

3ℓ
M3βV3B(λ0)

4e−
4
3

R λ0
0 (X− Y

X
)dλ̃

λ̃

∫ λh

λ0

dλ

λ

1 − X2 + Y

X
e

4
3

R λ
λ0

dλ̃
λ̃

1−X2+Y
X . (H.37)

Again, the integrand is a total derivative and one has,

SBH
E = −2

ℓ
M3βV3B(λ0)

4e−
4
3

R λ0
0 X0

dλ̃
λ̃ e

4
3

R λ
λ0

dλ̃
λ̃

1−X2+Y
X

∣

∣

∣

∣

λh

λ0

. (H.38)
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This can be simplified further: using (7.3), one realizes that the integrand in the exponent

is a total derivative of log Y (λ). Thus, one has,

SBH
E = −2

ℓ
M3βV3B(λ0)

4e−
4
3

R λ0
0 X0

dλ̃
λ̃

(

Y (λ0)

Y (λh)
− 1

)

. (H.39)

But Y (λh) = ∞ by regularity condition at the horizon (see section (7.3)), hence we have

the final expression for the Einstein contribution on the BH geometry:

SBH
E =

2

ℓ
M3βV3B(λ0)

4e−
4
3

R λ0
0 (X− Y

X ) dλ̃
λ̃ . (H.40)

The Einstein contribution to the free energy follows from the difference of (H.35)

and (H.40). In order to match the two expressions we use the matching conditions (H.31).

Finally we also use (H.26) to obtain:

δSE = SBH
E − STG

E =
2

ℓ
M3βV3B(λ0)

4

(

e−
4
3

R λ0
0 (X− Y

X ) dλ̃
λ̃ − e−

4
3

R λ0
0 (X0− Y

2X
)dλ̃

λ̃

)

. (H.41)

As λ0 is very small and the integrands in the expression above are very small in that region,

one can expand the exponentials and obtain,

δSE =
2

ℓ
M3βV3B(λ0)

4 2

3

∫ λ0

0

(

Y

X
− 2δX

)

. (H.42)

The functions Y and δX are given in section (7.2). Using these expressions it is straight-

forward to carry out the integrals. One obtains,

δSE(λ0) = −2

ℓ
M3βV3C0B(λ0)

4e
− 4

b0λ0 (b0λ0)
−4b. (H.43)

Finally we remove the cut-off by sending λ0 to 0 and using the definition of the integration

constant Λ:

lim
λ0→0

B(λ0)e
− 1

b0λ0 (b0λ0)
−b = Λ ℓ. (H.44)

Thus the final expression for the Einstein contribution to the free energy reads,

FE = −2

ℓ
C0M

3V3(Λ ℓ)4. (H.45)

H.6.2 Gibbons-Hawking contribution

We move on to the Gibbons-Hawking term that is given by the frame-independent expres-

sion, the second term in (2.1).

We first define two more functions of λ in addition to (H.25):

DA0(λ) = −1

ℓ
B0(λ)e−

4
3

R λ
0

dλ̃
λ̃

X0(λ̃), DA(λ) = −1

ℓ
B(λ)e−

4
3

R λ
0

dλ̃
λ̃

X(λ̃). (H.46)

Just as in (H.25) these are obtained from mapping the derivative of the scale factor from

r to λ frame:

DA0(λ) =
dA0

dr
(r0(λ)) , DA(λ) =

dA

dr
(r(λ)) (H.47)
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where the functions r(λ) and r0(λ) are given in (H.28).

Computing the trace of the extrinsic curvature in the λ-frame on the TG solu-

tion (H.22), one obtains,

STG
GH = 8M3β′V ′

3B0(λ0)
3DA0(λ0). (H.48)

Using the expressions above and (H.24), one has,

STG
GH = −8

ℓ
M3β′V ′

3B0(λ0)
4e−

4
3

R λ0
0

dλ̃
λ̃

X0(λ̃) (H.49)

Similarly, the Gibbons-Hawking term evaluated on the BH solution reads,

SBH
GH = M3βV3B(λ0)

3DA(λ0) (8 + 4Y (λ0)) , (H.50)

which gives,

SBH
GH = −8

ℓ
M3βV3B(λ0)

4e−
4
3

R λ0
0

dλ̃
λ̃

X(λ̃)

(

1 +
1

2
Y (λ0)

)

, (H.51)

Just as in the previous subsection, we compute the Gibbons-Hawking contribution to

the free energy by taking the difference of (H.49) and (H.51). Following the same steps as

outlined above (H.42), one arrives at the following result:

δSGH = SBH
GH − STG

GH = −8

ℓ
M3βV3B(λ0)

4

(

2

3

∫ λ0

0

(

Y

X
− 2δX

)

+
1

2
Y (λ0)

)

. (H.52)

Evaluating the integrals as before and using the small λ asymptotics of Y (see section 7.2)

one arrives at the final expression for the Gibbons-Hawking contribution to the free energy:

FE =
8

ℓ
(C0 − Y0/2)M

3V3(Λ ℓ)4. (H.53)

Thus, the total free energy is obtained from combining (H.45) and (H.53) as,

F =
1

ℓ
(6C0 − 4Y0)M

3V3(Λ ℓ)4. (H.54)

H.7 Fluctuations of λ and A in the λ-frame:

In order to compute the gluon condensate, we need to know δλ(r) = λ(r) − λ0(r), near

the boundary. This quantity is defined in the r-frame. In the λ-frame the quantities λ and

λ0 are the same, by definition. However one still finds a non-zero value for δΦ(r) after a

careful change of variables from r to λ frame.

The quantity λ0(r) maps to λ(r0(λ)) where r0 is defined in (H.28). Thus, δλ in the

λ-frame is evaluated by:

δλ ≡ λ(r) − λ0(r) = λ − λ(r0(λ)) =
dλ

dr

∣

∣

∣

∣

r0(λ)

δr(λ) = D0(λ)δr(λ), (H.55)

where D0 is defined in (H.25) and δr is given by, see (H.28),

δr(λ) = r(λ) − r0(λ) =

∫ λ

0
dλ̃
(

D(λ̃)−1 − D0(λ̃)−1
)

. (H.56)
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It is straightforward to work out (H.56) from (H.25) and (H.24). Let us define,

B(λ) = B0(λ) (1 + δA(λ)) . (H.57)

Then, one obtains,

δr(λ) =
ℓ

3

∫ λ

0

dλ̃

λ̃

[

δX(λ̃)

X0(λ̃)
δA(λ̃) − 4

3

∫ λ̃

0
δX

]

e
R λ̃
0

B0(λ̃)

X0(λ̃) . (H.58)

The last term is subleading in the limit λ → 0, so we neglect it for the moment. The

second termcan be computed from (H.24) and one finds,

δA(λ) = −9

4
G0e

− 4
b0λ (b0λ)−4b−2 + · · · (H.59)

Finally the first term follows from (7.9). All in all, one finds,

δr(λ) =
9

4Λ
g0e

− 5
b0λ (b0λ)−5b−2 + · · · (H.60)

where we also used the definition of Λ in (H.44). Now, δλ follows from (H.55) as,

δλ = D0(λ)δr(λ) =
9G0

4b0
(Λℓ)4e

− 4
b0λ (b0λ)−4b, (H.61)

which yields

δΦ(r) =
δλ

λ0
=

9

4
G0(Λℓ)4(r/ℓ)4 log(rΛ). (H.62)

This is the correct coefficient that produces the mathching of the conformal anomaly in

section 4.

One can also compute δb(r) in the r-frame, from the expressions that we obtained

above in the λ-frame. By definition,

δb(r) = b(r) − b0(r) = b(r) − b0(r0) −
db0

dr

∣

∣

∣

∣

r0

δr = b0(λ)δA(λ) − dB0

dλ
d0(λ)δr(λ), (H.63)

where δA(λ) and δr(λ) are given by (H.60) and (H.59) above. We see that the leading terms

cancel each other out, and one has to take into account the subleading terms in (H.60)

and (H.59). This is a straightforward but lengthy computation and best carried out by a

symbolical evaluation program. We shall only present the result here:

δb(r) =
2

5
G0(Λℓ)4(r/ℓ)4. (H.64)

This is the result in the r-frame. In the u-frame, the coefficient becomes 1
2G0.

H.8 Higher order terms in the near horizon expansion

Demanding regularity at the horizon determines the higher terms in the expansion of (7.21)

and (7.22). One finds,

X1 =
3

16

(

V ′′(Φh)

V (Φh)
− V ′(Φh)2

V (Φh)2

)

, Y1 =
9

64

(

V ′′(Φh)

V (Φh)
− 2

V ′(Φh)2

V (Φh)2

)

− 1. (H.65)
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H.9 Derivation of eq. (7.26)

Here, we compute temperature in the scalar variables. By definition, T is given by 4πT =

|ḟ(rh)| = |f dg
dA

dA
du

du
dr |. Using the definition of Y in (7.1), eqs. (H.1), (H.3), (7.5), (7.4) and

du/dr = exp(A) we obtain,

T =
Y (λh)

πℓ
e
A0−

R λh
λ0

dλ
λ

1
X e

4
3

R λh
λ0

dλ
λ

1+Y −X2

X . (H.66)

Now, using Y equation of motion (7.3) we see that the integrand in the last exponential is

a total derivative and can easily be integrated. One finds,

T =
Y (λ0)

πℓ
e
A0−

R λh
λ0

dλ
λ

1
X . (H.67)

Using the UV asymptotics of Y in (7.8) and (7.4) with b = exp(A) one identifies the r.h.s.

of (H.67) as,

T =
Y0

πb3(λh)
[ℓ−1e

4A0− 4
b0λ0 (b0λ0)

−4b]. (H.68)

The expression in the square brackets defines Λ, see (2.18). Thus, one finally obtains

eq. (7.26).

H.10 Integral representation for the free energy and the energy

Here, we provide further formulas regarding the integral representation of the free energy

in section 5.2.3. For the big BH one has,

FB(λh) = −4πM3V3

∫ λh

∞
b3(λ̃h)

dT

dλ̃h

dλ̃h, λh < λmin. (H.69)

Note that the two branches are combined in the integral, as b(λh) is a single valued in the

entire range λh ∈ {λ0,∞}. One can also put this equation in various useful forms. For

example, one can write it in terms of the Y0(λh) function. For this purpose, we make use

of the relation between T and Y0 in (7.26). Use this in (H.69), carry out the integral and

note that Y0(∞) = 0 to get:

FB(λh) = Λ4(Mℓ)3V3

(

12

∫ λh

∞
Y0(λ̃h)

dA

dλ̃h

dλ̃h − 4Y0(λh)

)

. (H.70)

Comparison of this equation with (7.29) reveals an alternative expression for the en-

ergy density:

ρ(λh) = Λ4(Mℓ)312

∫ λh

∞
Y0(λ̃h)

dA

dλ̃h

dλ̃h (H.71)

I High T asymptotics

We can determine how the various quantities we described above approach their ideal gas

values for large-T , by studying the next-to-leading order corrections to the AdS black-hole.

To leading order Y0 in (7.10) is determined by the AdS black-hole:

Y0 = π
T

Λ

1

(rhΛ)3
, T =

1

πrh
. (I.1)
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The subleading corrections to the AdS scale factor, close to the boundary, is presented in

section (5.1). From (7.8) and (3.10), one arrives at the following expression:

Y0(T ) = T̃ 4

[

1 − 4

3

1

log(T̃ )
− 16

9
b

log(log(T̃ ))

log2(T̃ )
+ · · ·

]

, T̃ ≡ π
T

Λ
, (I.2)

Let us first compute how (ρ − 3P )/T 4 approaches to 0 at high-T . This determines the

high-T asymptotics of the gluon condensate. It follows from (I.2) and integration by parts

in (7.10) that,

ρ − 3p

T 4
→ 4π2

135





1

log2
(

T
Tc

) + 8 b
log
(

log
(

T
Tc

))

log3
(

T
Tc

) + · · ·



 (I.3)

This computation can easily be extended to the large-T asymptotics of p, ρ and s. We find:

p

T 4
=

π2

45
− 4π2

135

1

log
(

T
Tc

) − 16b

135

log
(

log
(

T
Tc

))

log2
(

T
Tc

) + · · · (I.4)

s

T 3
=

4π2

45
− 16π2

135

1

log
(

T
Tc

) − 64π2b

135

log
(

log
(

T
Tc

))

log2
(

T
Tc

) + · · · (I.5)

ρ

T 4
=

3π2

45
− 4π2

45

1

log
(

T
Tc

) − 16π2b

45

log
(

log
(

T
Tc

))

log2
(

T
Tc

) + · · · (I.6)

We note that the pressure, entropy density and the energy density approach their ideal gas

limits from below as they should.

It is also useful to derive the high-T asymptotics of the speed of sound. It is obtained

from eqs. (I.2) and (7.33):

1

c2
s

− 3 =
4

3

1

log2
(

T
Tc

) +
32b

9

log
(

log
(

T
Tc

))

log3
(

T
Tc

) + · · · (I.7)

We note that the speed of sound approaches to its ideal gas value 1/3 also from below as

it should.

We remark that, all of these expressions are completely independent of the parameters

of our theory and any modification to the dilaton potential. It follows directly from de-

manding an asymptotically AdS solution dual to the UV of the field theory. Moreover, the

coefficients of the first terms are even independent of the parameters of the gauge theory,

i.e. the β-function coefficients. Thus, we expect this form hold universally for any large-Nc

gauge theory that exhibits logarithmic running in the UV.

J Analytic solutions

One can easily obtain analytic solutions to the system, by restricting to the fixed points

of (7.2) and (7.3). One obvious fixed point of (7.3) is Y = 0. This takes us back to the
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zero-T analysis which was studied in [28]. In the following we always consider the case

Y 6= 0. We present our solutions in the domain-wall coordinate system, see section A.2.

They can easily be converted into the conformal frame using (H.4).

J.1 Analytic solutions: zero potential

Another obvious fixed point of the system is X = const., Y = const and 1 + Y − X2 = 0.

From (7.6), we see that this corresponds to vanishing dilaton potential, thus it is not very

interesting for our purposes regarding holography. Nevertheless, it produces the following

interesting analytic solution.

It is straightforward to solve (H.1), (H.2) and (H.3). One finds, for the dilaton:

λ = eΦ =
(

C1 − 4X2 u

ℓ

)
3

4X
. (J.1)

Then the metric can be found as,

ds2 =
(

C1 − 4X2 u

ℓ

)
1

2X2

(

dxidxi −
(

C1 − 4X2 u

ℓ

)
X2

−1

X2
dt2

)

+
(

C1 − 4X2 u

ℓ

)
1−X2

X2
du2.

(J.2)

There is a curvature singularity at,

u0

ℓ
=

C1

4X2
, (J.3)

where the dilaton blows up and the metric shrinks to a point (for X2 < 1) or a line (for

X2 > 1). Note that X < 0 in all of our solutions.

In order to understand the physics of this solution, one has to distinguish these two

cases. For X2 > 1 the same point u0 coincides with the event horizon. Therefore there

is a curvature singularity at the event horizon uh = u0 where the geometry shrinks to a

point. We note also that Y > 0 in this case. Therefore, from (H.3) we see that g (or f) is

monotonically decreasing. It decreases from 1 at the boundary to 0 at the horizon.

In the other case, X2 < 1, there is no event horizon. There is a curvature singularity

at u0, where the geometry shrinks to a line. Also in this case g is monotonically increasing.

J.2 Analytic solutions: exponential potential

A less obvious fixed point of (7.2) is when X = const. and the dilaton potential

is exponential:

V = V0(1 − X2)λ− 8
3
X . (J.4)

The proportionality constant will become clear below.

Also in this case one can find the most general analytic solution to the system. This

case is of more interest because of the following reasons. We find below that in this case

Y does not need to be constant or zero and it can be a function of Φ. However, as (J.4)

does not depend on Y , we find that it is a moduli of the exponential potential. This fact

will allow us to obtain both thermal gas solutions and the black-hole solutions to the same

potential. Moreover, we note from [28] that the leading IR behavior of the dilaton potential,
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in most of the confining theories is an exponential. Since the confinement-deconfinement

phase transition is expected to take place in the IR of the theory, (J.4) can be taken a first

approximation to understand the finite temperature dynamics of the interesting confining

theories.

One first solves (7.3) to obtain Y as,

Y =
C2(1 − X2)

λα − C2
, (J.5)

where C2 ≥ 0 and we defined,

α =
4(1 − X2)

3X
. (J.6)

Note that for a monotonically decreasing g we need Y < 0. As we also require Y → 0

near the boundary, where λ → 0, one should take X2 < 1, hence α < 0. We stress that,

this case covers the rest of the physically interesting, constant X solutions, as the physical

solution in the previous subsection covered the range X2 > 1.

As we demonstrate below, the solution (J.5) describes a black-hole for C2 > 0 and a

thermal gas for C2 = 0. To check that indeed Y is a moduli of (J.4), one inserts (J.5)

in (7.6) and finds (J.4) after nice cancelations.

Both for the black-hole and the thermal gas, one finds the same λ behavior for

the dilaton:

λ = eΦ =
(

C1 − 4X2 u

ℓ

) 3
4X

, (J.7)

and the scale factor,

eA = eA0λ
1

3X . (J.8)

We note that these are the same as in the previous subsection, as they follow directly from

the fact that X is constant.

One finds the location of the horizon by solving for f from (7.5):

f = eg = 1 − C2λ
−α. (J.9)

We find that indeed f → 1 on the boundary, (λ → 0) as α < 0. There is an event horizon

located at (using (J.7)),

λh = C
1
α
2 i.e.

uh

ℓ
=

C1

4X2
− C

X2

1−X2

2

4X2
. (J.10)

The curvature singularity is located at λ = ∞ i.e. ,

u0

ℓ
=

C1

4X2
. (J.11)

We note that uh < u0 and indeed there is a well-behaved black-hole solution to the system.

The metric of the black-hole is given by,

ds2 = e2A0

(

C1 − 4X2 u

ℓ

)
1

2X2

{

dxidxi −
(

1 − C2(C1 − 4X2 u

ℓ
)

1−X2

X2

)

dt2
}

+

(

1 − C2(C1 − 4X2 u

ℓ
)

1−X2

X2

)−1

du2. (J.12)
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The temperature of the black-hole is determined by requiring regularity of the Eu-

clidean continuation at uh:

β =
1

T
=

4π

|f ′(uh)|eA(uh)
. (J.13)

One finds,

β = πℓ
e−A0C

1
4−X2

1−X2

2

1 − X2
. (J.14)

The physically most interesting case corresponds to the value X = −1/2, see [28]. Very

interestingly, in this case the temperature is only given by the integration constant A0:

β =
1

T
=

4πℓ

3eA0
. (J.15)

Otherwise the temperature is determined by the combination of A0 and C2, namely the

string tension and the location of the event horizon.

The thermal gas solution is found by setting C2 = 0 in (J.5), hence f = 1. The dilaton

is given again by (J.7) and the metric is,

ds2 = e2A0

(

C1 − 4X2 u

ℓ

) 1
2X2 {

dxidxi + dt2
}

+ du2. (J.16)

Here we required the same integration constant for A as the black-hole solution (J.12).

This is because they should have the same asymptotics at the boundary. Euclidean time

is compactified with circumference, β̄. We note that there is a curvature singularity ar u0

that is given by (J.11). It is the same locus as the curvature singularity of the black-hole

solution — that is cloaked behind the event horizon — resides.

Computation of the energy of the solutions. Here we prove that the analytic solu-

tions describe above do not demonstrate a Hawking-Page transition. Hence they are not

interesting for holographic purposes. The action is given by (2.1). One finds that the trace

of the intrinsic curvature is given by,

K =

√
f

2
(8A′ + g′) (J.17)

in the domain-wall coordinate system. Thus, the boundary contribution to the

action becomes,

Sbnd = −M3V3β
{

eg+4A(8A′ + g′)
}

ub
, (J.18)

where ub denotes the regulated boundary of the geometry infinitesimally close to −∞.

The bulk contribution to the action, evaluated on the solution can be simplified as,

Sbulk = 2M3V3β

∫ us

ub

du
d

du

(

fe4AA′)

= 2M3V3β
{

f(us)e
4A(us)A′(us) − f(ub)e

4A(ub)A′(ub)
}

. (J.19)

Here us denotes u0 or uh depending on which appears first. Thus, for the black-hole

solution us = uh, whereas for the thermal gas us = u0.
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The first term in (J.19) deserves attention. Clearly it vanishes for the black-hole, as

f(uh) = 0 by definition. However, it is not a priori clear that it also vanishes for the

thermal gas. A straightforward computation using (J.8), (J.7) and,

A′ = −1

ℓ
λ− 4X

3 (J.20)

shows that it indeed vanishes for our physically interesting case X2 < 1. Therefore, one

obtains the following total expression for the action from (J.18) and (J.19) by dropping

the first term in (J.19):

S = −2M3V3βeg(ub)+4A(ub)

(

5A′(ub) +
1

2
g′(ub)

)

. (J.21)

In order to compare the energies of the black-hole and the thermal gas geometries, we

fix the UV asymptotics of the thermal gas geometry by requiring the same circumference

for the Euclidean time at ub:

β̄ = β
√

f(ub). (J.22)

Now, it is straightforward to compute the energy of the geometries. For the black-

hole (J.12), one finds:

SBH = −2M3V3

(

β

ℓ

)

e4A0
(

C2(3 + 2X2) − 5λα
b

)

. (J.23)

Here λb is the value of the dilaton on the regulated boundary ub. As α < 0 and λ → 0

near the boundary, it is a divergent piece that should be regulated.

For the thermal gas one finds, using (J.22),

STG = −10M3V3

(

β

ℓ

)

e4A0

(

C2

2
− λα

b

)

. (J.24)

We note that the divergent terms in (J.23) and (J.24) cancels in the difference and one finds,

SBH − STG = −2M3V3

(

β

ℓ

)

e4A0C2

(

3X2 +
1

2

)

. (J.25)

We note from (J.14) that the temperature is given by,

eA0 =
πTℓ

1 − X2
C

1
4−X2

1−X2

2 . (J.26)

As (J.25) is always negative, we observe that the BH solution always minimizes the action,

hence if it exist it is the dominant solution. Therefore, there is no phase transition in this

geometry.
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